본문 바로가기

Game/Graphics

OpenGL-Tutorial 17 : Rotations

link : http://www.opengl-tutorial.org/kr/intermediate-tutorials/tutorial-17-quaternions/




이 튜토리얼은 OpenGL의 범위를 벗어나지만 매우 일반적인 문제, 즉 회전을 표현하는 방법을 다룬다.


Tutorial 3 - Matrices에서 행렬은 특정 축을 중심으로 점을 회전시킬 수 있음을 알게 되었다.


행렬은 정점을 변환하는 깔끔한 방법이지만 매트릭스 처리는 어렵다. 예를 들어 최종 행렬에서


회전 축을 가져 오는 것은 매우 까다롭다.


회전을 표현하는 가장 일반적인 두 가지 방법, 즉 오일러 각도와 쿼터니언을 제시한다.


가장 중요한 것은 Quaternions를 사용해야하는 이유를 설명할 것이다.








Foreword: rotation VS orientation (회전 vs 방향)


회전에 관한 article을 읽는 동안 어휘 때문에 혼란스러울 수 있다. 이 tutorial에서는 다음을 수행한다:


1) 방향은 상태이다 : "객체의 방향은 ..."
2) 회전은 작업이다 : "개체에 이 회전 적용"


즉, 회전을 적용할 때 방향을 변경한다. 두 가지 모두 같은 도구로 표현할 수 있으므로 혼동을 초래할 수 있다.








Euler Angles


오일러 각은 방향을 생각하는 가장 쉬운 방법이다. 기본적으로 x,y,z축 주위에 세 개의 회전을 저장한다.


이것은 이해하기 매우 쉬운 개념이다. vec3를 사용해 저장할 수 있다.

vec3 EulerAngles( RotationAroundXInRadians, RotationAroundYInRadians, RotationAroundZInRadians);

이 3회전은 일반적으로 다음과 같은 순서대로 적용된다 : Y -> Z -> X (반드시 그런 것은 아니다)


다른 순서를 사용하면 다른 결과가 나타난다.


오일러 각을 사용하는 간단한 방법 중 하나는 캐릭터의 방향을 설정하는 것이다.


일반적으로 게임 캐릭터는 세로 축에서만 X 및 Z에서 회전하지 않는다.


따라서, 3가지 방향보다는 "float direction"을 작성, 이해 및 유지하는 것이 더 쉽다.


오일러 각의 또 다른 좋은 사용법은 FPS카메라이다 : 당신은 heading(Y)과 up/down(X)를 위한 각을 가지고 있다.

(common/controls.cpp 참조)


그러나 일이 복잡해지면 오일러 각은 작동하기 어려운 것이다. 예를 들면 :


1) 두 방향 사이를 부드럽게 보간하는 것이 어렵다. 순식간에 X,Y,Z 각을 보간하는 것은 추악할 것이다.

2) 여러 회전을 적용하는 것은 복잡하고 정확하지 않다. 최종 회전 행렬을 계산하고,

   이 행렬에서 오일러 각을 추측해야한다.

3) 잘 알려진 문제인 "Gimbal Lock"은 때때로 회전과 모델을 거꾸로 뒤집을 수도 있는 다른 특이점을 차단한다.

4) 각기 다른 각도로 회전 (ex : -180 및 180)

5) 위의 말처럼 대개 올바른 순서는 Y->Z->X이지만 순서가 다른 라이브러리를 사용하는 경우 문제가 발생한다.

6) 일부 작업은 복잡하다. 예를 들어 특정 축을 중심으로 N도 회전하는 것!


쿼터니언은 이러한 문제를 해결하는 회전을 나타내는 도구이다.




Quaternions


쿼터니언은 다음과 같은 방법으로 회전을 나타내는 4개의 숫자로 구성된 집합이다. [x y z w] :

// RotationAngle is in radians
x = RotationAxis.x * sin(RotationAngle / 2)
y = RotationAxis.y * sin(RotationAngle / 2)
z = RotationAxis.z * sin(RotationAngle / 2)
w = cos(RotationAngle / 2)

RotationAxis는 이름에서 알 수 있듯이 회전하려는 축 주위이다. RotationAngle은 이 축을 중심으로 한 회전 각도이다.



따라서 본질적으로 쿼터니언은 회전 축과 회전 각을 저장하므로 회전을 쉽게 결합할 수 있다.






Reading quaternions


이 형식은 오일러 각보다 분명히 직관적이지는 않지만 읽을 수 있다.


x y z 구성 요소는 대략 회전축과 일치하고, w는 회전 각 (2로 나눔)의 acos()이다.


예를 들어, 디버거에서 다음 값을 볼 수 있다고 상상해보자 :


[0.7 0 0 0.7]. x = 0.7,  x는 y와 z보다 크다, 따라서 X 축을 기준으로 대부분이 회전한다.


그리고 2*acos(0.7) = 1.59 라디안이므로 90도 회전한다.





Basic operations


쿼터니언 뒤에 수학이 생기는 것은 거의 유용하지 않다. 표현은 너무 직관직어어서 대개 수학 함수를 사용하는


유틸리티 함수에만 의존한다. 관심이 있다면 유용한 도구 및 링크 페이지의 수학 서적을 참조해라!





How do I create a quaternion in C++?

// Don't forget to #include <glm/gtc/quaternion.hpp> and <glm/gtx/quaternion.hpp>

// Creates an identity quaternion (no rotation)
quat MyQuaternion;

// Direct specification of the 4 components
// You almost never use this directly
MyQuaternion = quat(w,x,y,z);

// Conversion from Euler angles (in radians) to Quaternion
vec3 EulerAngles(90, 45, 0);
MyQuaternion = quat(EulerAngles);

// Conversion from axis-angle
// In GLM the angle must be in degrees here, so convert it.
MyQuaternion = gtx::quaternion::angleAxis(degrees(RotationAngle), RotationAxis);




How do I create a quaternion in GLSL ?


너는 하지 않는다. 쿼터니언을 회전 행렬로 변환하고 모델 행렬에서 사용한다. MVP 행렬을 사용해 정점이 평소와 같이 회전한다.


경우에 따라 GLSL에서 쿼터니언을 사용하고 싶을 수도 있다. (ex: GPU에서 스켈 레탈 애니메이션을 수행하는경우)


GLSL에는 쿼터니언 타입이 없지만, vec4에 하나의 팩을 넣고 쉐이더에서 직접 수학을 할 수 있다.




How do I convert a quaternion to a matrix ?

mat4 RotationMatrix = quaternion::toMat4(quaternion);

You can now use it to build your Model matrix as usual:

mat4 RotationMatrix = quaternion::toMat4(quaternion);
...
mat4 ModelMatrix = TranslationMatrix * RotationMatrix * ScaleMatrix;
// You can now use ModelMatrix to build the MVP matrix





So, which one should I choose ?


오일러 각도와 쿼터니언 중 하나를 선택하는 것은 까다롭다. 오일러 각은 아티스트에게 직관적이므로 3D 편집기를 작성하는


경우 이를 사용해라. 그러나, 쿼터니언은 프로그래머에게 편리하며 더 빠르기 때문에 3D 엔진 코어에서 사용해야한다.


일반적으로는 내부적으로 쿼터니언을 사용하고, 사용자 인터페이스가 있을 때마다 오일러 각도를 표시한다.


당신은 필요한 모든 것을 다룰 수 있다. 그리고 그것을 필요로 하는 엔티티에 대해서도 오일러 각을 사용할 수 있다.






How do I know if two quaternions are similar ?


벡터를 사용할 때, 내적은 이 벡터들 사이각의 코사인을 제공한다. 이 값이 1이면 벡터가 같은 방향이다.


쿼터니언을 사용하면 정확히 동일하다.

float matching = quaternion::dot(q1, q2);
if ( abs(matching-1.0) < 0.001 ){
    // q1 and q2 are similar
}

이 내적의 acos()를 취해 q1과 q2 사이의 각도를 얻을 수 있다.




How do I apply a rotation to a point ?

rotated_point = orientation_quaternion *  point;

 그러나 모델 행렬을 계산하려면 행렬로 변환해야한다. 회전 중심은 항상 원점이다. 다른 점을 중심으로 회전하려하면 :

rotated_point = origin + (orientation_quaternion * (point-origin));




How do I interpolate between 2 quaternions ?


이를 SLERP : Spherical Linear intERPolation이라고 한다. GLM을 사용하면 다음과 같이 mix로 할 수 있다.

glm::quat interpolatedquat = quaternion::mix(quat1, quat2, 0.5f); // or whatever factor




How do I cumulate 2 rotations ?


간단하다! 2개의 쿼터니언을 곱하면된다. 순서는 행렬과 동일하다. (역순)

quat combined_rotation = second_rotation * first_rotation;




How do I find the rotation between 2 vectors ?


즉, v1과 v2를 일치하도록 회전하는데 필요한 쿼터니언을 어떻게 찾나.


기본 아이디어는 간단하다 :


1) 벡터 사이의 각도는 찾기 쉽다. 내적은 코사인을 제공한다.

2) 필요한 축 또한 찾기 쉽다. 두 벡터의 교차 곱이다.


다음 알고리즘은 이것을 정확히 수행하고, 또한 많은 특별한 경우도 처리한다.

quat RotationBetweenVectors(vec3 start, vec3 dest){
	start = normalize(start);
	dest = normalize(dest);

	float cosTheta = dot(start, dest);
	vec3 rotationAxis;

	if (cosTheta < -1 + 0.001f){
		// special case when vectors in opposite directions:
		// there is no "ideal" rotation axis
		// So guess one; any will do as long as it's perpendicular to start
		rotationAxis = cross(vec3(0.0f, 0.0f, 1.0f), start);
		if (gtx::norm::length2(rotationAxis) < 0.01 ) // bad luck, they were parallel, try again!
			rotationAxis = cross(vec3(1.0f, 0.0f, 0.0f), start);

		rotationAxis = normalize(rotationAxis);
		return gtx::quaternion::angleAxis(glm::radians(180.0f), rotationAxis);
	}

	rotationAxis = cross(start, dest);

	float s = sqrt( (1+cosTheta)*2 );
	float invs = 1 / s;

	return quat(
		s * 0.5f,
		rotationAxis.x * invs,
		rotationAxis.y * invs,
		rotationAxis.z * invs
	);

}




I need an equivalent of gluLookAt. How do I orient an object towards a point ?


RotationBetweenVectors를 사용해라.

// Find the rotation between the front of the object (that we assume towards +Z,
// but this depends on your model) and the desired direction
quat rot1 = RotationBetweenVectors(vec3(0.0f, 0.0f, 1.0f), direction);

Now, you might also want to force your object to be upright:

// Recompute desiredUp so that it's perpendicular to the direction
// You can skip that part if you really want to force desiredUp
vec3 right = cross(direction, desiredUp);
desiredUp = cross(right, direction);

// Because of the 1rst rotation, the up is probably completely screwed up.
// Find the rotation between the "up" of the rotated object, and the desired up
vec3 newUp = rot1 * vec3(0.0f, 1.0f, 0.0f);
quat rot2 = RotationBetweenVectors(newUp, desiredUp);

Now, combine them:

quat targetOrientation = rot2 * rot1; // remember, in reverse order.

주의해라. "direction"은 방향이지 목표 위치가 아니다. 하지만 단순히 position도 계산할 수 있다 : targetPos - currentPos


이 타겟 오리엔테이션을 가지면 startOrientation과 targetOrientation 사이를 보간할 수 있다.






How do I use LookAt, but limit the rotation at a certain speed ?


기본 아이디어는 SLERP (=glm::mix)를 하는 것이지만, 각도가 원하는 값보다 크지 않도록 보간 값으로 재생하는 것이다.

float mixFactor = maxAllowedAngle / angleBetweenQuaternions;
quat result = glm::gtc::quaternion::mix(q1, q2, mixFactor);

 다음은 여러 가지 특별한 경우를 다루는 것보다 완벽한 구현이다. mix()를 최적화로 직접 사용하지 않는다.

quat RotateTowards(quat q1, quat q2, float maxAngle){

	if( maxAngle < 0.001f ){
		// No rotation allowed. Prevent dividing by 0 later.
		return q1;
	}

	float cosTheta = dot(q1, q2);

	// q1 and q2 are already equal.
	// Force q2 just to be sure
	if(cosTheta > 0.9999f){
		return q2;
	}

	// Avoid taking the long path around the sphere
	if (cosTheta < 0){
	    q1 = q1*-1.0f;
	    cosTheta *= -1.0f;
	}

	float angle = acos(cosTheta);

	// If there is only a 2&deg; difference, and we are allowed 5&deg;,
	// then we arrived.
	if (angle < maxAngle){
		return q2;
	}

	float fT = maxAngle / angle;
	angle = maxAngle;

	quat res = (sin((1.0f - fT) * angle) * q1 + sin(fT * angle) * q2) / sin(angle);
	res = normalize(res);
	return res;

}

You can use it like that:

CurrentOrientation = RotateTowards(CurrentOrientation, TargetOrientation, 3.14f * deltaTime );









1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <GL/glew.h>
#include <glfw3.h>
#include <GL/glew.h>
GLFWwindow* window;
 
//로테이션
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <glm/gtx/norm.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <glm/gtx/norm.hpp>
 
#include <AntTweakBar.h>
 
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
using namespace glm;
 
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
 
GLuint LoadShaders(const char *const char *);
GLuint loadBMP_custom(const char *);
GLuint loadDDS(const char *);
bool loadOBJ(
    const char *,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &);
 
void indexVBO(
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
 
    std::vector<unsigned short> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &
);
void indexVBO_TBN(
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
 
    std::vector<unsigned short> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &
);
 
 
//mouse-keyboard input
void computeMatricesFromInputs();
glm::mat4 getViewMatrix();
glm::mat4 getProjectionMatrix();
 
glm::mat4 ViewMatrix;
glm::mat4 ProjectionMatrix;
 
glm::mat4 getViewMatrix() {
    return ViewMatrix;
}
glm::mat4 getProjectionMatrix() {
    return ProjectionMatrix;
}
 
struct PackedVertex {
    glm::vec3 position;
    glm::vec2 uv;
    glm::vec3 normal;
    bool operator<(const PackedVertex that) const {
        return memcmp((void*)this, (void*)&that, sizeof(PackedVertex)) > 0;
    };
};
 
bool is_near(float v1, float v2) {
    return fabs(v1 - v2) < 0.01f;
}
 
bool getSimilarVertexIndex_fast(
    PackedVertex & packed,
    std::map<PackedVertex, unsigned short> & VertexToOutIndex,
    unsigned short & result
) {
    std::map<PackedVertex, unsigned short>::iterator it = VertexToOutIndex.find(packed);
    if (it == VertexToOutIndex.end()) {
        return false;
    }
    else {
        result = it->second;
        return true;
    }
}
 
bool getSimilarVertexIndex(
    glm::vec3 & in_vertex,
    glm::vec2 & in_uv,
    glm::vec3 & in_normal,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals,
    unsigned short & result
) {
    // Lame linear search
    for (unsigned int i = 0; i < out_vertices.size(); i++) {
        if (
            is_near(in_vertex.x, out_vertices[i].x) &&
            is_near(in_vertex.y, out_vertices[i].y) &&
            is_near(in_vertex.z, out_vertices[i].z) &&
            is_near(in_uv.x, out_uvs[i].x) &&
            is_near(in_uv.y, out_uvs[i].y) &&
            is_near(in_normal.x, out_normals[i].x) &&
            is_near(in_normal.y, out_normals[i].y) &&
            is_near(in_normal.z, out_normals[i].z)
            ) {
            result = i;
            return true;
        }
    }
    // No other vertex could be used instead.
    // Looks like we'll have to add it to the VBO.
    return false;
}
 
 
void computeTangentBasis(
    //inputs
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    //outputs
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &
);
 
//text2D
unsigned int Text2DTextureID;
unsigned int Text2DVertexBufferID;
unsigned int Text2DUVBufferID;
unsigned int Text2DShaderID;
unsigned int Text2DUniformID;
 
void initText2D(const char *);
void printText2D(const char *intintint);
void cleanupText2D();
 
 
//포지션 초기화
glm::vec3 position = glm::vec3(005);
float horizontalAngle = 3.14f;
float verticalAngle = 0.0f;
float initialFoV = 45.0f;
 
float speed = 3.0f;
float mouseSpeed = 0.005f;
 
void APIENTRY DebugOutputCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam) {
 
    printf("OpenGL Debug Output message : ");
 
    if (source == GL_DEBUG_SOURCE_API_ARB) printf("Source : API; ");
    else if (source == GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB)    printf("Source : WINDOW_SYSTEM; ");
    else if (source == GL_DEBUG_SOURCE_SHADER_COMPILER_ARB)    printf("Source : SHADER_COMPILER; ");
    else if (source == GL_DEBUG_SOURCE_THIRD_PARTY_ARB)        printf("Source : THIRD_PARTY; ");
    else if (source == GL_DEBUG_SOURCE_APPLICATION_ARB)        printf("Source : APPLICATION; ");
    else if (source == GL_DEBUG_SOURCE_OTHER_ARB)            printf("Source : OTHER; ");
 
    if (type == GL_DEBUG_TYPE_ERROR_ARB)                        printf("Type : ERROR; ");
    else if (type == GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB)    printf("Type : DEPRECATED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB)    printf("Type : UNDEFINED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_PORTABILITY_ARB)            printf("Type : PORTABILITY; ");
    else if (type == GL_DEBUG_TYPE_PERFORMANCE_ARB)            printf("Type : PERFORMANCE; ");
    else if (type == GL_DEBUG_TYPE_OTHER_ARB)                printf("Type : OTHER; ");
 
    if (severity == GL_DEBUG_SEVERITY_HIGH_ARB)                printf("Severity : HIGH; ");
    else if (severity == GL_DEBUG_SEVERITY_MEDIUM_ARB)        printf("Severity : MEDIUM; ");
    else if (severity == GL_DEBUG_SEVERITY_LOW_ARB)            printf("Severity : LOW; ");
 
    //break point를 여기에 설정해라, 당신의 디버거는 프로그램을 멈출 것이다
    //callstack은 바로 너에게 offending call을 보여줄 것이다
    printf("Mesage : %s\n", message);
}
 
//로테이션
vec3 gPosition1(-1.5f, 0.0f, 0.0f);
vec3 gOrientation1;
 
vec3 gPosition2(1.5f, 0.05f, 0.0f);
quat gOrientation2;
 
bool gLookAtOther = true;
 
//quaternion such that q*start = dest 리턴
quat RotationBetweenVectors(vec3, vec3);
 
//"direction"을 바라보는 개체를 만드는 쿼터니언을 반환한다.
//RotationBetweenVectors와 유사하지만 수직 방향을 제어한다.
//이것은 정지 상태에서 객체가 +Z를 향하고 있다고 가정한다.
//첫번째 매개 변수는 목표 지점이 아닌 방향이다.
quat LookAt(vec3, vec3);
 
//SLERP와 비슷하지만 maxAngle보다 큰 회전을 금지한다 (라디안 단위).
//LookAt과 함께 문자를 만들 수 있다.
quat RotateTowards(quat, quat, float);
 
int main() {
 
    // Initialise GLFW
    if (!glfwInit())
    {
        fprintf(stderr, "Failed to initialize GLFW\n");
        getchar();
        return -1;
    }
 
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
 
    // Open a window and create its OpenGL context
    window = glfwCreateWindow(1024768"QBOT_opengl"NULLNULL);
    if (window == NULL) {
        fprintf(stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n");
        getchar();
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
 
    int windowWidth = 1024;
    int windowHeight = 768;
    glfwGetFramebufferSize(window, &windowWidth, &windowHeight);
 
    // Initialize GLEW
    glewExperimental = true;
    if (glewInit() != GLEW_OK) {
        fprintf(stderr, "Failed to initialize GLEW\n");
        getchar();
        glfwTerminate();
        return -1;
    }
 
    // Example 1:
    /*if (GLEW_AMD_seamless_cubemap_per_texture) {
        printf("The GL_AMD_seamless_cubemap_per_texture is present, (but we're not goint to use it)\n");
        //이제 glTexParameterf를 TEXTURE_CUBE_MAP_SEAMLESS_ARB 매개 변수와 함께 호출하는 것이 합법적이다
        //분명히 이 코드는 AMD가 아닌 하드웨어에서는 실표할 것이기 때문에 테스트해야한다
    }
    // Example 2:
    if (GLEW_ARB_debug_output) {
        printf("The OpenGL implementation provides debug output. Let's use it!\n");
        glDebugMessageCallbackARB(&DebugOutputCallback, NULL);
        glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
    }
    else {
        printf("ARB_debug_output unavailable. You have to use glGetError() and/or gDebugger to catch mistakes.\n");
    }*/
 
 
    // GUI 초기화
    TwInit(TW_OPENGL_CORE, NULL);
    TwWindowSize(1024768);
    TwBar * EulerGUI = TwNewBar("Euler settings");
    TwBar * QuaternionGUI = TwNewBar("Quaternion settings");
    TwSetParam(EulerGUI, NULL"refresh", TW_PARAM_CSTRING, 1"0.1");
    TwSetParam(QuaternionGUI, NULL"position", TW_PARAM_CSTRING, 1"808 16");
    
    TwAddVarRW(EulerGUI, "Euler X", TW_TYPE_FLOAT, &gOrientation1.x, "step=0.01");
    TwAddVarRW(EulerGUI, "Euler Y", TW_TYPE_FLOAT, &gOrientation1.y, "step=0.01");
    TwAddVarRW(EulerGUI, "Euler Z", TW_TYPE_FLOAT, &gOrientation1.z, "step=0.01");
    TwAddVarRW(EulerGUI, "Pos X", TW_TYPE_FLOAT, &gPosition1.x, "step=0.1");
    TwAddVarRW(EulerGUI, "Pos Y", TW_TYPE_FLOAT, &gPosition1.y, "step=0.1");
    TwAddVarRW(EulerGUI, "Pos Z", TW_TYPE_FLOAT, &gPosition1.z, "step=0.1");
 
    TwAddVarRW(QuaternionGUI, "Quaternion", TW_TYPE_QUAT4F, &gOrientation2, "showval=true open=true ");
    TwAddVarRW(QuaternionGUI, "Use LookAt", TW_TYPE_BOOL8, &gLookAtOther, "help='Look at the other monkey ?'");
 
    // set GLFW event callbacks. 나는 간결함을 위해 glfwSetWindowSizeCallback를 제거할 것이다 
    glfwSetMouseButtonCallback(window, (GLFWmousebuttonfun)TwEventMouseButtonGLFW); // - Directly redirect GLFW mouse button events to AntTweakBar
    glfwSetCursorPosCallback(window, (GLFWcursorposfun)TwEventMousePosGLFW);          // - Directly redirect GLFW mouse position events to AntTweakBar
    glfwSetScrollCallback(window, (GLFWscrollfun)TwEventMouseWheelGLFW);    // - Directly redirect GLFW mouse wheel events to AntTweakBar
    glfwSetKeyCallback(window, (GLFWkeyfun)TwEventKeyGLFW);                         // - Directly redirect GLFW key events to AntTweakBar
    glfwSetCharCallback(window, (GLFWcharfun)TwEventCharGLFW);                      // - Directly redirect GLFW char events to AntTweakBar
 
    // Ensure we can capture the escape key being pressed below
    glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
 
    // Set the mouse at the center of the screen
    glfwPollEvents();
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    // Dark blue background
    glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
 
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glEnable(GL_CULL_FACE);
 
    //GLuint VertexArrayID;
    //glGenVertexArrays(1, &VertexArrayID);
    //glBindVertexArray(VertexArrayID);
 
    //Shader를 불러온다.
    GLuint programID = LoadShaders("StandardShading.vertexshader""StandardShading.fragmentshader");
    //GLuint programID = LoadShaders("NormalMapping.vertexshader", "NormalMapping.fragmentshader");
    //GLuint programID = LoadShaders("StandardShadingRTT.vertexshader", "StandardShadingRTT.fragmentshader");
    //GLuint programID = LoadShaders("TransformVertexShader.vertexshader", "TextureFragmentShaderLOD.fragmentshader");
    //GLuint depthProgramID = LoadShaders("DepthRTT.vertexshader", "DepthRTT.fragmentshader");
 
    //매트릭스ID 추가
    GLuint MatrixID = glGetUniformLocation(programID, "MVP");
    GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
    GLuint ModelMatrixID = glGetUniformLocation(programID, "M");
//    GLuint ModelView3x3MatrixID = glGetUniformLocation(programID, "MV3x3");
//    GLuint depthMatrixID = glGetUniformLocation(depthProgramID, "depthMVP");
    
    // buffer를 위한 handle
    GLuint vertexPosition_modelspaceID = glGetAttribLocation(programID, "vertexPosition_modelspace");
    GLuint vertexUVID = glGetAttribLocation(programID, "vertexUV");
    GLuint vertexNormal_modelspaceID = glGetAttribLocation(programID, "vertexNormal_modelspace");
 
    //어떠한 두 가지의 함수를 사용해서 텍스처를 불러온다
    //GLuint Texture = loadBMP_custom("uvtemplate.bmp");
    //GLuint Texture = loadDDS("uvmap.DDS");
    //GLuint DiffuseTexture = loadDDS("diffuse.DDS");
    //GLuint NormalTexture = loadBMP_custom("normal.bmp");
    //GLuint SpecularTexture = loadDDS("specular.DDS");
    GLuint Texture = loadDDS("uvmap.DDS");
 
    GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
    //GLuint DiffuseTextureID = glGetUniformLocation(programID, "DiffuseTextureSampler");
    //GLuint NormalTextureID = glGetUniformLocation(programID, "NormalTextureSampler");
    //GLuint SpecularTextureID = glGetUniformLocation(programID, "SpecularTextureSampler");
 
    //우리의 .obj file을 읽는다
    std::vector<glm::vec3> vertices;
    std::vector<glm::vec2> uvs;
    std::vector<glm::vec3> normals;
    bool res = loadOBJ("suzanne.obj", vertices, uvs, normals);
 
    /*
    std::vector<glm::vec3> tangents;
    std::vector<glm::vec3> bitangents;
    computeTangentBasis(
        vertices, uvs, normals, // input
        tangents, bitangents    // output
    );
    */
    std::vector<unsigned short> indices;
    std::vector<glm::vec3> indexed_vertices;
    std::vector<glm::vec2> indexed_uvs;
    std::vector<glm::vec3> indexed_normals;
    indexVBO(vertices, uvs, normals, indices, indexed_vertices, indexed_uvs, indexed_normals);
    //std::vector<glm::vec3> indexed_tangents;
    //std::vector<glm::vec3> indexed_bitangents;
    /*indexVBO_TBN(
        vertices, uvs, normals, tangents, bitangents,
        indices, indexed_vertices, indexed_uvs, indexed_normals, indexed_tangents, indexed_bitangents
    );*/
 
    GLuint vertexbuffer;
    glGenBuffers(1&vertexbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_vertices.size() * sizeof(glm::vec3), &indexed_vertices[0], GL_STATIC_DRAW);
 
    GLuint uvbuffer;
    glGenBuffers(1&uvbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_uvs.size() * sizeof(glm::vec2), &indexed_uvs[0], GL_STATIC_DRAW);
 
    GLuint normalbuffer;
    glGenBuffers(1&normalbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_normals.size() * sizeof(glm::vec3), &indexed_normals[0], GL_STATIC_DRAW);
    /*
    GLuint tangentbuffer;
    glGenBuffers(1, &tangentbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, tangentbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_tangents.size() * sizeof(glm::vec3), &indexed_tangents[0], GL_STATIC_DRAW);
    GLuint bitangentbuffer;
    glGenBuffers(1, &bitangentbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, bitangentbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_bitangents.size() * sizeof(glm::vec3), &indexed_bitangents[0], GL_STATIC_DRAW);
    */
 
    // Generate a buffer for the indices as well
    GLuint elementbuffer;
    glGenBuffers(1&elementbuffer);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW);
 
    glUseProgram(programID);
    GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace");
 
    // render to texture
 
    // framebuffer, 0,1 or 더 많은 텍스처로 재그룹된다. 그리고 0 or 1 깊이 버퍼
    //GLuint FramebufferName = 0;
    //glGenFramebuffers(1, &FramebufferName);
    //glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
 
    //GLuint renderedTexture;
    //glGenTextures(1, &renderedTexture);
    //glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
 
    //새롭게 만들어진 텍스처를 "bind" : 모든 미래 텍스처 기능들은 이 텍스처에 수정
    //glBindTexture(GL_TEXTURE_2D, renderedTexture);
 
    //비어있는 이미지를 OpenGL에 준다 (마지막 0은 비어있음을 의미)
/*    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, windowWidth, windowHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
    //Poor filtering
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    //The depth buffer
    GLuint depthrenderbuffer;
    glGenRenderbuffers(1, &depthrenderbuffer);
    glBindRenderbuffer(GL_RENDERBUFFER, depthrenderbuffer);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, windowWidth, windowHeight);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthrenderbuffer);
    */
    //// Alternative : Depth texture. Slower, but you can sample it later in your shader
/*    GLuint depthTexture;
    glGenTextures(1, &depthTexture);
    glBindTexture(GL_TEXTURE_2D, depthTexture);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
    
    glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthTexture, 0);
    //bound framebuffer에는 색이 없다, 깊이 뿐이다
    glDrawBuffer(GL_NONE);
    // framebuffer가 ok인지 항상 체크한다
    if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
        return false;
        */
    // "renderedTexture" 우리의 색을 입힌다
    //glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, renderedTexture, 0);
 
    //// Depth texture alternative : 
    //glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthTexture, 0);
 
    // Set the list of draw buffers.
    /*GLenum DrawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
    glDrawBuffers(1, DrawBuffers); // "1" is the size of DrawBuffers
    */
 
    // The fullscreen quad's FBO
    /*static const GLfloat g_quad_vertex_buffer_data[] = {
        -1.0f, -1.0f, 0.0f,
        1.0f, -1.0f, 0.0f,
        -1.0f,  1.0f, 0.0f,
        -1.0f,  1.0f, 0.0f,
        1.0f, -1.0f, 0.0f,
        1.0f,  1.0f, 0.0f,
    };
    GLuint quad_vertexbuffer;
    glGenBuffers(1, &quad_vertexbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer);
    glBufferData(GL_ARRAY_BUFFER, sizeof(g_quad_vertex_buffer_data), g_quad_vertex_buffer_data, GL_STATIC_DRAW);
    // Create and compile our GLSL program from the shaders
    GLuint quad_programID = LoadShaders("Passthrough.vertexshader", "SimpleTexture.fragmentshader");
    GLuint texID = glGetUniformLocation(quad_programID, "texture");
    //GLuint timeID = glGetUniformLocation(quad_programID, "time");
    
    // 쉐이더의 GLSL 프로그램을 만들고 컴파일한다
    GLuint programID = LoadShaders("ShadowMapping.vertexshader", "ShadowMapping.fragmentshader");
    // "myTextureSampler" uniform의 handle을 얻는다
    GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
    GLuint MatrixID = glGetUniformLocation(programID, "MVP");
    GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
    GLuint ModelMatrixID = glGetUniformLocation(programID, "M");
    GLuint DepthBiasID = glGetUniformLocation(programID, "DepthBiasMVP");
    GLuint ShadowMapID = glGetUniformLocation(programID, "shadowMap");
    GLuint lightInvDirID = glGetUniformLocation(programID, "LightInvDirection_worldspace");
    */
    //little text library를 초기화
    //initText2D("Holstein.DDS");
 
    //speed computation
    double lastTime = glfwGetTime();
    double lastFrameTime = lastTime;
    int nbFrames = 0;
 
    //enable blending
    //glEnable(GL_BLEND);
    //glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);    
 
    do {
        //속도 측정
        double currentTime = glfwGetTime();
        float deltaTime = (float)(currentTime - lastFrameTime);
        nbFrames++;
        if (currentTime - lastTime >= 1.0) {
            printf("%f ms/frame\n"1000.0 / double(nbFrames));
            nbFrames = 0;
            lastTime += 1.0;
        }
 
        // framebuffer에 render한다
    //    glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
    //    glViewport(0, 0, 1024, 1024); //전체 framebuffer에 렌더, 왼쪽아래부터 오른쪽 위까지 완료
 
        // 쉐이더에서 bias를 사용하지 않고 대신에 faces를 그린다
        // 이미 작은면으로 전면에서 분리되어있다.        
//        glEnable(GL_CULL_FACE);
//        glCullFace(GL_BACK); // 뒤쪽을 향한 삼각형을 뒤틀어서 -> 앞쪽을 향한 삼각형만 그린다
 
        // Clear the screen. It's not mentioned before Tutorial 02, but it can cause flickering, so it's there nonetheless.
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 
        glUseProgram(programID);
 
        /*glm::vec3 lightInvDir = glm::vec3(0.5f, 2, 2);
        // 뷰의 빛 위치로부터 MVP matrix를 검사해라
        glm::mat4 depthProjectionMatrix = glm::ortho<float>(-10, 10, -10, 10, -10, 20);
        glm::mat4 depthViewMatrix = glm::lookAt(lightInvDir, glm::vec3(0, 0, 0), glm::vec3(0, 1, 0));
        glm::mat4 depthModelMatrix = glm::mat4(1.0);
        glm::mat4 depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
        //glm::vec3 lightPos = glm::vec3(4, 4, 4);
        //glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z);
        */
 
        glm::mat4 ProjectionMatrix = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);
        glm::mat4 ViewMatrix = glm::lookAt(
            glm::vec3(007), // Camera is here
            glm::vec3(000), // and looks here
            glm::vec3(010)  // Head is up (set to 0,-1,0 to look upside-down)
        );
 
        // 텍스처 유닛 0에 있는 텍스처를 바인드
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Texture);
        glUniform1i(TextureID, 0);
 
        //
 
        //텍스처 유닛0에 있는 텍스처를 바인딩한다.
    /*    glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, DiffuseTexture);
        glUniform1i(DiffuseTextureID, 0);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, NormalTexture);
        glUniform1i(NormalTextureID, 1);
        glActiveTexture(GL_TEXTURE2);
        glBindTexture(GL_TEXTURE_2D, SpecularTexture);
        glUniform1i(SpecularTextureID, 2);
        */
 
        //glUniformMatrix4fv(depthMatrixID, 1, GL_FALSE, &depthMVP[0][0]);
 
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
        glVertexAttribPointer(
            0,            //0번째 속성. 0이 될 특별한 이유는 없지만 쉐이더의 레이아웃과 반드시 맞춰야함
            3,            //크기(size)
            GL_FLOAT,    //타입(type)
            GL_FALSE,    //정규화(normalized)?
            0,            //다음 요소까지의 간격(stride)
            (void*)0    //배열 버퍼의 오프셋(offset)
        );
        
        //2nd 속성 버퍼 : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
        glVertexAttribPointer(
            1,
            2,
            GL_FLOAT,
            GL_FALSE,
            0,
            (void*)0
        );
        
        //3rd 속성 버퍼 : normals
        glEnableVertexAttribArray(2);
        glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
        glVertexAttribPointer(
            2,
            3,
            GL_FLOAT,
            GL_FALSE,
            0,
            (void*)0
        );
        /*
        // 4th attribute buffer : tangents
        glEnableVertexAttribArray(3);
        glBindBuffer(GL_ARRAY_BUFFER, tangentbuffer);
        glVertexAttribPointer(
            3,                                // attribute
            3,                                // size
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
        );
        // 5th attribute buffer : bitangents
        glEnableVertexAttribArray(4);
        glBindBuffer(GL_ARRAY_BUFFER, bitangentbuffer);
        glVertexAttribPointer(
            4,                                // attribute
            3,                                // size
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
        );
        */
        // Index 버퍼
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
 
        glm::vec3 lightPos = glm::vec3(444);
        glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z);
 
        {//Euler
 
            gOrientation1.y += 3.14159f / 2.0f * deltaTime;
 
            // model matrix 빌드
            glm::mat4 RotationMatrix = eulerAngleYXZ(gOrientation1.y, gOrientation1.x, gOrientation1.z); glm::mat4 TranslationMatrix = translate(mat4(), gPosition1); // A bit to the left
            glm::mat4 ScalingMatrix = scale(mat4(), vec3(1.0f, 1.0f, 1.0f));
            glm::mat4 ModelMatrix = TranslationMatrix * RotationMatrix * ScalingMatrix;
 
            glm::mat4 MVP = ProjectionMatrix * ViewMatrix * ModelMatrix;
 
            glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
            glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
            glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
 
            // Draw the triangles !
            glDrawElements(
                GL_TRIANGLES,      // mode
                indices.size(),    // count
                GL_UNSIGNED_SHORT,   // type
                (void*)0           // element array buffer offset
            );
        }
        {//Quaternion
 
            if (gLookAtOther) {
                vec3 desiredDir = gPosition1 - gPosition2;
                vec3 desiredUp = vec3(0.0f, 1.0f, 0.0f);        //+Y
 
                // 원하는 방향을 계산한다
                quat targetOrientation = normalize(LookAt(desiredDir, desiredUp));
 
                // 보간한다
                gOrientation2 = RotateTowards(gOrientation2, targetOrientation, 1.0f*deltaTime);
 
            }
 
            glm::mat4 RotationMatrix = mat4_cast(gOrientation2);
            glm::mat4 TranslationMatrix = translate(mat4(), gPosition2); // A bit to the right
            glm::mat4 ScalingMatrix = scale(mat4(), vec3(1.0f, 1.0f, 1.0f));
            glm::mat4 ModelMatrix = TranslationMatrix * RotationMatrix * ScalingMatrix;
 
            glm::mat4 MVP = ProjectionMatrix * ViewMatrix * ModelMatrix;
 
            // 현재 바운드 쉐이더에 우리의 transformationd르 보낸다
            // in the "MVP" uniform
            glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
            glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
            glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
            
            // Draw the triangles !
            glDrawElements(
                GL_TRIANGLES,      // mode
                indices.size(),    // count
                GL_UNSIGNED_SHORT,   // type
                (void*)0           // element array buffer offset
            );
        }
 
 
        /*// 삼각형 그리기
        glDrawElements(
            GL_TRIANGLES,        //mode
            indices.size(),        //count
            GL_UNSIGNED_SHORT,    //type
            (void*)0            //element array buffer offset
        );*/
 
        //glDrawArrays(GL_TRIANGLES, 0, vertices.size());
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
        glDisableVertexAttribArray(2);
        //glDisableVertexAttribArray(3);
        //glDisableVertexAttribArray(4);
 
        TwDraw();
        /*
        // 스크린에 Render한다
        glBindFramebuffer(GL_FRAMEBUFFER, 0);
        glViewport(0, 0, windowWidth, windowHeight);
        glEnable(GL_CULL_FACE);
        glCullFace(GL_BACK);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        glUseProgram(programID);
        */
 
        /*
        //키보드와 마우스 인풋으로부터의 MVP 매트릭스를 계산한다
        computeMatricesFromInputs();
        glm::mat4 ProjectionMatrix = getProjectionMatrix();
        glm::mat4 ViewMatrix = getViewMatrix();
        glm::mat4 ModelMatrix = glm::mat4(1.0);
        //glm::mat4 ModelViewMatrix = ViewMatrix * ModelMatrix;
        //glm::mat3 ModelView3x3Matrix = glm::mat3(ModelViewMatrix);
        glm::mat4 MVP = ProjectionMatrix*ViewMatrix*ModelMatrix;
        glm::mat4 biasMatrix(
            0.5, 0.0, 0.0, 0.0,
            0.0, 0.5, 0.0, 0.0,
            0.0, 0.0, 0.5, 0.0,
            0.5, 0.5, 0.5, 1.0
        );
        glm::mat4 depthBiasMVP = biasMatrix*depthMVP;
        
        //transformation을 현재 쉐이더에 보냄
        glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
        glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
        glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
        glUniformMatrix4fv(DepthBiasID, 1, GL_FALSE, &depthBiasMVP[0][0]);
        //glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
        //glUniformMatrix3fv(ModelView3x3MatrixID, 1, GL_FALSE, &ModelView3x3Matrix[0][0]);
        
        glUniform3f(lightInvDirID, lightInvDir.x, lightInvDir.y, lightInvDir.z);
        // Bind our texture in Texture Unit 0
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Texture);
        // Set our "myTextureSampler" sampler to user Texture Unit 0
        glUniform1i(TextureID, 0);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, depthTexture);
        glUniform1i(ShadowMapID, 1);
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
        glVertexAttribPointer(
            0,                  // attribute
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
        );
        // 2nd attribute buffer : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
        glVertexAttribPointer(
            1,                                // attribute
            2,                                // size
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
        );
        // 3rd attribute buffer : normals
        glEnableVertexAttribArray(2);
        glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
        glVertexAttribPointer(
            2,                                // attribute
            3,                                // size
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
        );
        // Index buffer
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
        // Draw the triangles !
        glDrawElements(
            GL_TRIANGLES,      // mode
            indices.size(),    // count
            GL_UNSIGNED_SHORT, // type
            (void*)0           // element array buffer offset
        );
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
        glDisableVertexAttribArray(2);
        // Render only on a corner of the window (or we we won't see the real rendering...)
        glViewport(0, 0, 512, 512);
        // Use our shader
        glUseProgram(quad_programID);
        // Bind our texture in Texture Unit 0
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, depthTexture);
        // Set our "renderedTexture" sampler to user Texture Unit 0
        glUniform1i(texID, 0);
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer);
        glVertexAttribPointer(
            0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
        );
        // Draw the triangle !
        // You have to disable GL_COMPARE_R_TO_TEXTURE above in order to see anything !
        //glDrawArrays(GL_TRIANGLES, 0, 6); // 2*3 indices starting at 0 -> 2 triangles
        glDisableVertexAttribArray(0);
        */
        //char text[256];
        //sprintf(text, "%.2f sec", glfwGetTime());
        //printText2D(text, 10, 500, 60);
 
        ////////////////////////////////////////////////////////
        // DEBUG ONLY !!!
        // Don't use this in real code !!
        ////////////////////////////////////////////////////////
        /*
        glMatrixMode(GL_PROJECTION);
        glLoadMatrixf((const GLfloat*)&ProjectionMatrix[0]);
        glMatrixMode(GL_MODELVIEW);
        glm::mat4 MV = ViewMatrix * ModelMatrix;
        glLoadMatrixf((const GLfloat*)&MV[0]);
        glUseProgram(0);
        // normals
        glColor3f(0, 0, 1);
        glBegin(GL_LINES);
        for (unsigned int i = 0; i<indices.size(); i++) {
            glm::vec3 p = indexed_vertices[indices[i]];
            glVertex3fv(&p.x);
            glm::vec3 o = glm::normalize(indexed_normals[indices[i]]);
            p += o*0.1f;
            glVertex3fv(&p.x);
        }
        glEnd();
        // tangents
        glColor3f(1, 0, 0);
        glBegin(GL_LINES);
        for (unsigned int i = 0; i<indices.size(); i++) {
            glm::vec3 p = indexed_vertices[indices[i]];
            glVertex3fv(&p.x);
            glm::vec3 o = glm::normalize(indexed_tangents[indices[i]]);
            p += o*0.1f;
            glVertex3fv(&p.x);
        }
        glEnd();
        // bitangents
        glColor3f(0, 1, 0);
        glBegin(GL_LINES);
        for (unsigned int i = 0; i<indices.size(); i++) {
            glm::vec3 p = indexed_vertices[indices[i]];
            glVertex3fv(&p.x);
            glm::vec3 o = glm::normalize(indexed_bitangents[indices[i]]);
            p += o*0.1f;
            glVertex3fv(&p.x);
        }
        glEnd();
        // light pos
        glColor3f(1, 1, 1);
        glBegin(GL_LINES);
        glVertex3fv(&lightPos.x);
        lightPos += glm::vec3(1, 0, 0)*0.1f;
        glVertex3fv(&lightPos.x);
        lightPos -= glm::vec3(1, 0, 0)*0.1f;
        glVertex3fv(&lightPos.x);
        lightPos += glm::vec3(0, 1, 0)*0.1f;
        glVertex3fv(&lightPos.x);
        glEnd();
        */
 
 
        //스크린에 렌더
    /*    glBindFramebuffer(GL_FRAMEBUFFER, 0);
        //전체 framebuffer에 렌더, 왼쪽 아래부터 오른쪽 위 코너까지 완료
        glViewport(0, 0, windowWidth, windowHeight);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        glUseProgram(quad_programID);
        //텍스쳐 0에서 텍스처 바인드
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, renderedTexture);
        glUniform1i(texID, 0);
        glUniform1f(timeID, (float)(glfwGetTime()*10.0f));
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer);
        glVertexAttribPointer(
            0,                  // attribute 0. No particular reason for 0, but must match the layout in the shader.
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
        );
        // Draw the triangles !
        glDrawArrays(GL_TRIANGLES, 0, 6); // 2*3 indices starting at 0 -> 2 triangles
        glDisableVertexAttribArray(0);
        */
        // Swap buffersz
        glfwSwapBuffers(window);
        glfwPollEvents();
 
    } // Check if the ESC key was pressed or the window was closed
    while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS &&
        glfwWindowShouldClose(window) == 0);
 
    // Cleanup VBO and shader
    glDeleteBuffers(1&vertexbuffer);
    glDeleteBuffers(1&uvbuffer);
    glDeleteBuffers(1&normalbuffer);
    glDeleteBuffers(1&elementbuffer);
    glDeleteProgram(programID);
    //glDeleteProgram(depthProgramID);
    //glDeleteProgram(quad_programID);
    glDeleteTextures(1&Texture);
 
    //glDeleteFramebuffers(1, &FramebufferName);
    //glDeleteTextures(1, &depthTexture);
    //glDeleteBuffers(1, &quad_vertexbuffer);
    //glDeleteVertexArrays(1, &VertexArrayID);
 
    // Close OpenGL window and terminate GLFW
    TwTerminate();
    glfwTerminate();
 
    return 0;
}
 
GLuint LoadShaders(const char * vertex_file_path, const char * fragment_file_path) {
 
    //쉐이더 생성
    GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER);
    GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);
 
    //버텍스 쉐이더 코드를 파일에서 읽기
    std::string VertexShaderCode;
    std::ifstream VertexShaderStream(vertex_file_path, std::ios::in);
    if (VertexShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << VertexShaderStream.rdbuf();
        VertexShaderCode = sstr.str();
        VertexShaderStream.close();
    }
    else {
        printf("파일 %s를 읽을 수 없음. 정확한 디렉토리를 사용 중입니까?\n", vertex_file_path);
        getchar();
        return 0;
    }
 
    //프래그먼트 쉐이더 코드를 파일에서 읽기
    std::string FragmentShaderCode;
    std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in);
    if (FragmentShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << FragmentShaderStream.rdbuf();
        FragmentShaderCode = sstr.str();
        FragmentShaderStream.close();
    }
 
    GLint Result = GL_FALSE;
    int InfoLogLength;
 
    //버텍스 쉐이더를 컴파일
    printf("Compiling shader : %s\n", vertex_file_path);
    char const * VertexSourcePointer = VertexShaderCode.c_str();
    glShaderSource(VertexShaderID, 1&VertexSourcePointer, NULL);
    glCompileShader(VertexShaderID);
 
    //버텍스 쉐이더를 검사
    glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> VertexShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL&VertexShaderErrorMessage[0]);
        printf("%s\n"&VertexShaderErrorMessage[0]);
    }
 
    //프래그먼트 쉐이더를 컴파일
    printf("Compiling shader : %s", fragment_file_path);
    char const * FragmentSourcePointer = FragmentShaderCode.c_str();
    glShaderSource(FragmentShaderID, 1&FragmentSourcePointer, NULL);
    glCompileShader(FragmentShaderID);
 
    //프래그먼트 쉐이더를 검사
    glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> FragmentShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL&FragmentShaderErrorMessage[0]);
        printf("%s\n"&FragmentShaderErrorMessage[0]);
    }
 
    //프로그램에 링크
    printf("Linking program\n");
    GLuint ProgramID = glCreateProgram();
    glAttachShader(ProgramID, VertexShaderID);
    glAttachShader(ProgramID, FragmentShaderID);
    glLinkProgram(ProgramID);
 
    //프로그램 검사
    glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
    glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> ProgramErrorMessage(InfoLogLength + 1);
        glGetProgramInfoLog(ProgramID, InfoLogLength, NULL&ProgramErrorMessage[0]);
        printf("%s\n"&ProgramErrorMessage[0]);
    }
 
    glDetachShader(ProgramID, VertexShaderID);
    glDetachShader(ProgramID, FragmentShaderID);
 
    glDeleteShader(VertexShaderID);
    glDeleteShader(FragmentShaderID);
 
    return ProgramID;
}
 
GLuint loadBMP_custom(const char * imagepath) {
 
    printf("Reading image %s\n", imagepath);
 
    //BMP파일의 헤더에서 데이터를 읽는다
    unsigned char header[54];
    unsigned int dataPos;
    unsigned int imageSize;
    unsigned int width, height;
    //실제 RGB 데이터
    unsigned char * data;
 
    //파일을 연다
    FILE * file = fopen(imagepath, "rb");
    if (!file) {
        printf("%s는 열수 없다. 경로가 맞는지 확인해라.\n", imagepath);
        getchar();
        return 0;
    }
 
    //헤더를 읽는다, i.e. the 54 first bytes
 
    //만약 54 bytes보다 적게 읽혔으면 문제 발생
    if (fread(header, 154, file) != 54) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //A BMP 파일은 항상 "BM"으로 시작한다.
    if (header[0!= 'B' || header[1!= 'M') {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //24pp file임을 확인한다.
    if (*(int*)&(header[0x1e]) != 0 || *(int*)&(header[0x1C]) != 24) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
 
    //이미지에 대한 정보를 읽는다.
    dataPos = *(int*)&(header[0x0A]);
    imageSize = *(int*)&(header[0x22]);
    width = *(int*)&(header[0x12]);
    height = *(int*)&(header[0x16]);
 
    //몇몇 BMP 파일들은 포맷이 놓쳐졌다, 놓쳐진 정보를 추측해라
    if (imageSize == 0) imageSize = width*height * 3// 3 : one byte for each Red-Green-Blue component
    if (dataPos == 0) dataPos = 54//BMP 헤더는 항상 이 형식
 
    //버퍼를 생성한다
    data = new unsigned char[imageSize];
 
    //파일의 버퍼에 있는 실제 데이터를 읽는다
    fread(data, 1, imageSize, file);
 
    //모든 것은 현재 메모리에 있다, 파일을 닫는다
    fclose(file);
 
    //openGL 텍스처를 만든다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다.
    glBindTexture(GL_TEXTURE_2D, textureID);
 
    //이미지를 OpenGL에게 넘긴다
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data);
 
    delete[] data;
 
    // trilinear(삼선형) 필터링
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glGenerateMipmap(GL_TEXTURE_2D);
 
    return textureID;
}
 
GLuint loadDDS(const char * imagepath) {
 
    unsigned char header[124];
 
    FILE *fp;
 
    //파일을 연다
    fp = fopen(imagepath, "rb");
    if (fp == NULL) {
        printf("%s는 열 수 없다. 경로를 확인해라\n", imagepath);
        getchar();
        return 0;
    }
 
    //파일의 타입을 확인한다
    char filecode[4];
    fread(filecode, 14, fp);
    if (strncmp(filecode, "DDS "4!= 0) {
        fclose(fp);
        return 0;
    }
 
    //surface desc를 얻는다
    fread(&header, 1241, fp);
 
    unsigned int height = *(unsigned int*)&(header[8]);
    unsigned int width = *(unsigned int*)&(header[12]);
    unsigned int linearSize = *(unsigned int*)&(header[16]);
    unsigned int mipMapCount = *(unsigned int*)&(header[24]);
    unsigned int fourCC = *(unsigned int*)&(header[80]);
 
    unsigned char * buffer;
    unsigned int bufsize;
 
    bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize;
    buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char));
    fread(buffer, 1, bufsize, fp);
    fclose(fp);
 
    unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4;
    unsigned int format;
    switch (fourCC)
    {
    case FOURCC_DXT1:
        format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
        break;
    case FOURCC_DXT3:
        format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
        break;
    case FOURCC_DXT5:
        format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
        break;
    default:
        free(buffer);
        return 0;
    }
 
    //하나의 OpenGL 텍스처를 생성한다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다
    glBindTexture(GL_TEXTURE_2D, textureID);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 
    unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16;
    unsigned int offset = 0;
 
    //밉맵을 불러온다
    for (unsigned int level = 0; level < mipMapCount && (width || height); ++level)
    {
        unsigned int size = ((width + 3/ 4)*((height + 3/ 4)*blockSize;
        glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height,
            0size, buffer + offset);
 
        offset += size;
        width /= 2;
        height /= 2;
 
        //Non-Power-Of-Two 텍스처를 사용합니다.
        //이 코드는 혼란을 줄이기 위해 웹 페이지에는 포함되어 있지 않습니다.
        if (width < 1)width = 1;
        if (height < 1) height = 1;
    }
 
    free(buffer);
 
    return textureID;
}
 
bool loadOBJ(
    const char * path,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    printf("OBJ 파일 로딩중 %s...\n", path);
 
    std::vector<unsigned int> vertexIndices, uvIndices, normalIndices;
    std::vector<glm::vec3> temp_vertices;
    std::vector <glm::vec2> temp_uvs;
    std::vector<glm::vec3> temp_normals;
 
    FILE * file = fopen(path, "r");
    if (file == NULL) {
        printf("파일 경로를 확인하세요!\n");
        getchar();
        return false;
    }
 
    while (1) {
 
        char lineHeader[128];
 
        //첫번째 라인의 첫번째 단어를 읽는다
        int res = fscanf(file, "%s", lineHeader);
        if (res == EOF)
            break;
 
        //else : 라인의 헤더를 parse
        if (strcmp(lineHeader, "v"== 0) {
            glm::vec3 vertex;
            fscanf(file, "%f %f %f\n"&vertex.x, &vertex.y, &vertex.z);
            temp_vertices.push_back(vertex);
        }
        else if (strcmp(lineHeader, "vt"== 0) {
            glm::vec2 uv;
            fscanf(file, "%f %f\n"&uv.x, &uv.y);
            uv.y = -uv.y; //우리가 DDS texture만을 이용할 것이므로 V의 좌표를 반대로 바꾸어준다. 만약 TGA or BMP 로더를 사용하면 이 것을 제거해라.
            temp_uvs.push_back(uv);
        }
        else if (strcmp(lineHeader, "vn"== 0) {
            glm::vec3 normal;
            fscanf(file, "%f %f %f\n"&normal.x, &normal.y, &normal.z);
            temp_normals.push_back(normal);
        }
        else if (strcmp(lineHeader, "f"== 0) {
            std::string vertex1, vertex2, vertex3;
            unsigned int vertexIndex[3], uvIndex[3], normalIndex[3];
            int matches = fscanf(file, "%d/%d/%d %d/%d/%d %d/%d/%d\n"&vertexIndex[0], &uvIndex[0], &normalIndex[0], &vertexIndex[1], &uvIndex[1], &normalIndex[1], &vertexIndex[2], &uvIndex[2], &normalIndex[2]);
            if (matches != 9) {
                printf("파일을 읽을수없다.");
                return false;
            }
            vertexIndices.push_back(vertexIndex[0]);
            vertexIndices.push_back(vertexIndex[1]);
            vertexIndices.push_back(vertexIndex[2]);
            uvIndices.push_back(uvIndex[0]);
            uvIndices.push_back(uvIndex[1]);
            uvIndices.push_back(uvIndex[2]);
            normalIndices.push_back(normalIndex[0]);
            normalIndices.push_back(normalIndex[1]);
            normalIndices.push_back(normalIndex[2]);
        }
        else {
            //나머지 라인을 먹는다.
            char stupidBuffer[1000];
            fgets(stupidBuffer, 1000, file);
        }
    }
 
    //각 삼각형의 각 꼭지점
    for (unsigned int i = 0; i < vertexIndices.size(); i++) {
 
        //속성의 인덱스를 가져온다
        unsigned int vertexIndex = vertexIndices[i];
        unsigned int uvIndex = uvIndices[i];
        unsigned int normalIndex = normalIndices[i];
 
        //인덱스에서 속성을 가져온다
        glm::vec3 vertex = temp_vertices[vertexIndex - 1];
        glm::vec2 uv = temp_uvs[uvIndex - 1];
        glm::vec3 normal = temp_normals[normalIndex - 1];
 
        //버퍼에 속성을 넣는다
        out_vertices.push_back(vertex);
        out_uvs.push_back(uv);
        out_normals.push_back(normal);
 
    }
 
    return true;
 
}
 
void indexVBO(
    std::vector<glm::vec3> & in_vertices,
    std::vector<glm::vec2> & in_uvs,
    std::vector<glm::vec3> & in_normals,
 
    std::vector<unsigned short> & out_indices,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    std::map<PackedVertex, unsigned short> VertexToOutIndex;
 
    //각 input vertex를 위해
    for (unsigned int i = 0; i < in_vertices.size(); i++) {
        PackedVertex packed = { in_vertices[i], in_uvs[i], in_normals[i] };
 
        //out_XXXX에서 비슷한 vertex를 찾는다
        unsigned short index;
        bool found = getSimilarVertexIndex_fast(packed, VertexToOutIndex, index);
 
        if (found) { //비슷한 vertex가 VBO에 이미 있다면 대신 사용한다
            out_indices.push_back(index);
        }
        else {         //아니라면 이것은 아웃풋 데이터 추가가 필요하다
            out_vertices.push_back(in_vertices[i]);
            out_uvs.push_back(in_uvs[i]);
            out_normals.push_back(in_normals[i]);
            unsigned short newindex = (unsigned short)out_vertices.size() - 1;
            out_indices.push_back(newindex);
            VertexToOutIndex[packed] = newindex;
        }
 
    }
 
 
}
 
void indexVBO_TBN(
    std::vector<glm::vec3> & in_vertices,
    std::vector<glm::vec2> & in_uvs,
    std::vector<glm::vec3> & in_normals,
    std::vector<glm::vec3> & in_tangents,
    std::vector<glm::vec3> & in_bitangents,
 
    std::vector<unsigned short> & out_indices,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals,
    std::vector<glm::vec3> & out_tangents,
    std::vector<glm::vec3> & out_bitangents
) {
    //각 input vertex를 위해
    for (unsigned int i = 0; i < in_vertices.size(); i++) {
 
        //out_XXXX 에서 비슷한 vertex를 찾는다
        unsigned short index;
        bool found = getSimilarVertexIndex(in_vertices[i], in_uvs[i], in_normals[i], out_vertices, out_uvs, out_normals, index);
 
        if (found) { //비슷한 vertex가 이미 VBO에 있으면, 이것을 대신 사용
            out_indices.push_back(index);
 
            //tangents와 bitangents의 평균을 한다
            out_tangents[index] += in_tangents[i];
            out_bitangents[index] += in_bitangents[i];
        }
        else { // 만약 아니라면, output data에서 추가한다
            out_vertices.push_back(in_vertices[i]);
            out_uvs.push_back(in_uvs[i]);
            out_normals.push_back(in_normals[i]);
            out_tangents.push_back(in_tangents[i]);
            out_bitangents.push_back(in_bitangents[i]);
            out_indices.push_back((unsigned short)out_vertices.size() - 1);
        }
    }
 
 
}
 
void computeMatricesFromInputs() {
 
    //glfwGetTime은 한번만 호출된다.
    static double lastTime = glfwGetTime();
 
    //현재와 마지막 프레임의 시간 차를 계산한다.
    double currentTime = glfwGetTime();
    float deltaTime = float(currentTime - lastTime);
 
    //마우스의 위치를 얻는다.
    double xpos, ypos;
    glfwGetCursorPos(window, &xpos, &ypos);
 
    //다음 프레임의 마우스 위치를 리셋한다.
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    horizontalAngle += mouseSpeed * float(1024 / 2 - xpos);
    verticalAngle += mouseSpeed * float(768 / 2 - ypos);
 
    //Direction : Spherical 좌표 to Cartesian 좌표 변환
    glm::vec3 direction(
        cos(verticalAngle)*sin(horizontalAngle),
        sin(verticalAngle),
        cos(verticalAngle)*cos(horizontalAngle)
    );
 
    //Right vector
    glm::vec3 right = glm::vec3(
        sin(horizontalAngle - 3.14f / 2.0f),
        0,
        cos(horizontalAngle - 3.14f / 2.0f)
    );
 
    //Up vector
    glm::vec3 up = glm::cross(right, direction);
 
    //앞으로 이동
    if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) {
        position += direction*deltaTime*speed;
    }
    //뒤로 이동
    if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) {
        position -= direction*deltaTime*speed;
    }
    //오른쪽로 Strafe
    if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) {
        position += right*deltaTime*speed;
    }
    //왼쪽으로 Strafe
    if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) {
        position -= right*deltaTime*speed;
    }
 
    float FoV = initialFoV;
 
    ProjectionMatrix = glm::perspective(FoV, 4.0f / 3.0f, 0.1f, 100.0f);
 
    ViewMatrix = glm::lookAt(
        position,                //camera here
        position + direction,        //and looks here
        up                        // Head is up
    );
 
    //다음 프레임을 위해
    lastTime = currentTime;
}
 
void computeTangentBasis(
    //inputs
    std::vector<glm::vec3> & vertices,
    std::vector<glm::vec2> & uvs,
    std::vector<glm::vec3> & normals,
    //outputs
    std::vector<glm::vec3> & tangents,
    std::vector<glm::vec3> & bitangents
) {
    for (unsigned int i = 0; i < vertices.size(); i += 3) {
 
        //shortcuts for vertices
        glm::vec3 & v0 = vertices[i + 0];
        glm::vec3 & v1 = vertices[i + 1];
        glm::vec3 & v2 = vertices[i + 2];
 
        //shortcuts for UVs
        glm::vec2 & uv0 = uvs[i + 0];
        glm::vec2 & uv1 = uvs[i + 1];
        glm::vec2 & uv2 = uvs[i + 2];
 
        //edges of the triangle : position delta
        glm::vec3 deltaPos1 = v1 - v0;
        glm::vec3 deltaPos2 = v2 - v0;
 
        //UV delta
        glm::vec2 deltaUV1 = uv1 - uv0;
        glm::vec2 deltaUV2 = uv2 - uv0;
 
        float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x);
        glm::vec3 tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y)*r;
        glm::vec3 bitangent = (deltaPos2 * deltaUV1.x - deltaPos1*deltaUV2.x)*r;
 
        //삼각형의 모든 세개의 정점을 위해 같은 tangent를 세팅한다.
        //그것들은 곧 병합될겉이다
        tangents.push_back(tangent);
        tangents.push_back(tangent);
        tangents.push_back(tangent);
 
        //binormals를 위한 같은 것
        bitangents.push_back(bitangent);
        bitangents.push_back(bitangent);
        bitangents.push_back(bitangent);
 
    }
 
    // "Going Further" 봐라
    for (unsigned int i = 0; i < vertices.size(); i += 1) {
        glm::vec3 & n = normals[i];
        glm::vec3 & t = tangents[i];
        glm::vec3 & b = bitangents[i];
 
        //Gram-Schmidt orthogonalize
        t = glm::normalize(t - n*glm::dot(n, t));
 
        //handedness 계산
        if (glm::dot(glm::cross(n, t), b) < 0.0f) {
            t = t*-1.0f;
        }
    }
}
 
void initText2D(const char * texturePath) {
 
    //텍스쳐 초기화
    Text2DTextureID = loadDDS(texturePath);
 
    //VBO 초기화
    glGenBuffers(1&Text2DVertexBufferID);
    glGenBuffers(1&Text2DUVBufferID);
 
    //Shader 초기화
    Text2DShaderID = LoadShaders("TextVertexShader.vertexshader""TextVertexShader.fragmentshader");
 
    //uniforms' IDs 초기화
    Text2DUniformID = glGetUniformLocation(Text2DShaderID, "myTextureSampler");
 
}
void printText2D(const char * text, int x, int y, int size) {
 
    unsigned int length = strlen(text);
 
    //buffer 채우기
    std::vector<glm::vec2> vertices;
    std::vector<glm::vec2> UVs;
    for (unsigned int i = 0; i < length; i++) {
        glm::vec2 vertex_up_left = glm::vec2(x + i*size, y + size);
        glm::vec2 vertex_up_right = glm::vec2(x + i*size + size, y + size);
        glm::vec2 vertex_down_right = glm::vec2(x + i*size + size, y);
        glm::vec2 vertex_down_left = glm::vec2(x + i*size, y);
 
        vertices.push_back(vertex_up_left);
        vertices.push_back(vertex_down_left);
        vertices.push_back(vertex_up_right);
 
        vertices.push_back(vertex_down_right);
        vertices.push_back(vertex_up_right);
        vertices.push_back(vertex_down_left);
 
        char character = text[i];
        float uv_x = (character % 16/ 16.0f;
        float uv_y = (character / 16/ 16.0f;
 
        glm::vec2 uv_up_left = glm::vec2(uv_x, uv_y);
        glm::vec2 uv_up_right = glm::vec2(uv_x + 1.0f / 16.0f, uv_y);
        glm::vec2 uv_down_right = glm::vec2(uv_x + 1.0f / 16.0f, (uv_y + 1.0f / 16.0f));
        glm::vec2 uv_down_left = glm::vec2(uv_x, (uv_y + 1.0f / 16.0f));
        UVs.push_back(uv_up_left);
        UVs.push_back(uv_down_left);
        UVs.push_back(uv_up_right);
 
        UVs.push_back(uv_down_right);
        UVs.push_back(uv_up_right);
        UVs.push_back(uv_down_left);
 
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec2), &vertices[0], GL_STATIC_DRAW);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glBufferData(GL_ARRAY_BUFFER, UVs.size() * sizeof(glm::vec2), &UVs[0], GL_STATIC_DRAW);
 
        // Bind shader
        glUseProgram(Text2DShaderID);
 
        // Bind texture
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Text2DTextureID);
        // Set our "myTextureSampler" sampler to user Texture Unit 0
        glUniform1i(Text2DUniformID, 0);
 
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glVertexAttribPointer(02, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        // 2nd attribute buffer : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glVertexAttribPointer(12, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 
        // Draw call
        glDrawArrays(GL_TRIANGLES, 0, vertices.size());
 
        glDisable(GL_BLEND);
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
    }
 
}
void cleanupText2D() {
 
    // Delete buffers
    glDeleteBuffers(1&Text2DVertexBufferID);
    glDeleteBuffers(1&Text2DUVBufferID);
 
    // Delete texture
    glDeleteTextures(1&Text2DTextureID);
 
    // Delete shader
    glDeleteProgram(Text2DShaderID);
}
 
quat RotationBetweenVectors(vec3 start, vec3 dest) {
    start = normalize(start);
    dest = normalize(dest);
 
    float cosTheta = dot(start, dest);
    vec3 rotationAxis;
 
    if (cosTheta < -1 + 0.001f) {
        //반대 방향의 벡터인 특별한 경우 :
        //"ideal" rotation 축이 없다
        //그래서 추축해라; 어떤 것도 그것이 시작에 수직일 때만 할 것이다
        //이 구현은 up축을 중심으로 한 회전을 선호하지만
        rotationAxis = cross(vec3(0.0f, 0.0f, 1.0f), start);
        if (length2(rotationAxis) < 0.01//운이 나빠서 평행일때 다시해라!
            rotationAxis = cross(vec3(1.0f, 0.0f, 0.0f), start);
 
        rotationAxis = normalize(rotationAxis);
        return angleAxis(180.0f, rotationAxis);
    }
 
    // Stan Melax의 게임 프로그래밍 Gems 1 구현
    rotationAxis = cross(start, dest);
 
    float s = sqrt((1 + cosTheta) * 2);
    float invs = 1 / s;
 
    return quat(
        s*0.5f,
        rotationAxis.x * invs,
        rotationAxis.y * invs,
        rotationAxis.z * invs
    );
}
 
quat LookAt(vec3 direction, vec3 desiredUp) {
 
    if (length2(direction) < 0.0001f)
        return quat();
 
    // 방향에 수직이 되도록 desiredUp을 재계산한다
    // 원하는 부분을 실제로 강제 실행하려면 해당 부분을 건너 뛸 수 있다
    vec3 right = cross(direction, desiredUp);
    desiredUp = cross(right, direction);
 
    // 객체의 앞면(+Z쪽으로 가정하는 회전)을 찾는다
    // 그러나 이것은 당신의 모델에 달려있다, 그리고 원하는 방향
    quat rot1 = RotationBetweenVectors(vec3(0.0f, 0.0f, 1.0f), direction);
 
    // 1회전 때문에, 위로 올랐을 때 아마 완전히 엉망이 되었다
    // 회전된 객체의 "up"과 원하는 객체 사이의 회전을 찾는다
    vec3 newUp = rot1*vec3(0.0f, 1.0f, 0.0f);
    quat rot2 = RotationBetweenVectors(newUp, desiredUp);
 
    // 적용한다
    return rot2*rot1;
}
 
quat RotateTowards(quat q1, quat q2, float maxAngle) {
 
    if (maxAngle < 0.001f) {
        // 회전은 허용되지 않는다. 나중에 0으로 나누는 것을 방지해라
        return q1;
    }
 
    float cosTheta = dot(q1, q2);
 
    // q1과 q2는 이미 동일하다
    // q2는 옳다
    if (cosTheta > 0.9999f) {
        return q2;
    }
 
    // sphere 주변의 긴 경로를 방지해라
    if (cosTheta < 0) {
        q1 = q1*-1.0f;
        cosTheta *= -1.0f;
    }
 
    float angle = acos(cosTheta);
 
    // 차이가 2개인 경우 5가 허용될까?
    if (angle < maxAngle) {
        return q2;
    }
 
    // 이것은 slerp()와 같지만 사용자 정의 t와 함께 한다
    float t = maxAngle / angle;
    angle = maxAngle;
 
    quat res = (sin((1.0f - t)*angle) * q1 + sin(t*angle)*q2) / sin(angle);
    res = normalize(res);
    return res;
}
cs


'Game > Graphics' 카테고리의 다른 글

OpenGL-Tutorial 19 : Particles / Instancing  (0) 2018.07.05
OpenGL-Tutorial 18 : Billboards  (0) 2018.07.04
OpenGL-Tutorial 16 : Shadow mapping  (2) 2018.07.02
OpenGL-Tutorial 15 : Lightmaps  (0) 2018.07.02
OpenGL-Tutorial 14 : Render To Texture  (0) 2018.07.01