link : http://www.opengl-tutorial.org/kr/intermediate-tutorials/tutorial-15-lightmaps/
이것은 비디오 전용 자습서이다. 새로운 OpenGL 관련 기술 / 구문을 소개하지는 않지만,
이미 알고있는 기술을 사용해 고품질의 그림자를 만드는 방법을 보여준다.
이 튜토리얼은 블렌더에서 간단한 세계를 만드는 방법과 라이트 맵을 베이크해
어플리케이션에서 사용할 수 있게 해준다.
Blender에 대한 사전지식이 필요하지 않다. 나는 모든 키보드 단축키와 모든 것을 설명할 것이다.
A note on lightmaps
라이트 맵은 구워진다. 딱 한 번만. 이것은 완전히 정적이라는 것을 의미한다. 런타임 중에는 라이트를 이동할 수 없다. 혹은 제거해야한다.
이것은 햇빛이나 전구를 깰 수 없는 실내 장면에서 유용할 수 있다. 또한, 설치가 매우 쉽고 속도를 높일 수 없다.
Addendum
OpenGL에서 렌더링 할 때 약간의 결함이 있음을 알 수 있다.
이것은 밉 맵핑(mipmapping) 때문이다. 밉맵은 먼 거리에서 볼 때 텍셀을 서로 섞는다.
텍스처의 배경에 있는 검은 픽셀이 라이트 맵의 좋은 부분과 섞이게 된다. 이를 피하기 위해 할 수 있는 일이 몇 가지 있다.
1) 블랜더에게 UV 맵의 한계 주위에 여백을 생성하도록 요청할 수 있다. 이것은 "bake" 패널의 "margin" 매개 변수이다.
좋은 결과를 얻으려면 최대 20 texel까지 올라야 할 수도 있다.
2) texture fetch에서 bias를 사용할 수 있다.
color = texture( myTextureSampler, UV, -2.0 ).rgb;
-2 는 bias이다. 이 값으로 실험해야 한다. 위의 스크린 샷은 bias +2로 찍었다.
이 것은 OpenGL이 찍었어야하는 위의 2개의 밉맵을 선택한다는 것을 의미한다.
: 사후 처리 단계에서 검정색 배경을 채울 수 있습니다.
음... 뭐랄까 나는 OpenGL로 라이트맵을 만드는 튜토리얼인줄 알았는데 툴을 써서 먼저 만든 것을 넣는? 작업이었다.
다른 튜토리얼도 할 예정이라 차근차근 배워가면서 찾아봐야겠다! (약간 실망)
1) TextVertexShader.frgmentshader
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #version 330 core in vec2 UV; out vec4 color; uniform sampler2D myTextureSampler; void main(){ color = texture( myTextureSampler, UV ); } | cs |
2) TextureFrgmentShaderLOD.frgmentshader
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #version 330 core //정점 쉐이더의 보간값 in vec2 UV; out vec3 color; //전체 메시에 대해 일정하게 유지되는 값 uniform sampler2D myTextureSampler; void main(){ //output color = 지정된 UV에서 텍스처의 색상 color = texture(myTextureSampler, UV, -2.0).rgb; } | cs |
3) source.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 | #include <stdio.h> #include <stdlib.h> #include <iostream> #include <fstream> #include <sstream> #include <vector> #include <map> #include <GL/glew.h> #include <glfw3.h> #include <GL/glew.h> GLFWwindow* window; #include <glm/glm.hpp> #include <glm/gtx/transform.hpp> using namespace glm; #define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII #define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII #define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII GLuint LoadShaders(const char *, const char *); GLuint loadBMP_custom(const char *); GLuint loadDDS(const char *); bool loadOBJ( const char *, std::vector<glm::vec3> &, std::vector<glm::vec2> &, std::vector<glm::vec3> &); void indexVBO( std::vector<glm::vec3> & , std::vector<glm::vec2> & , std::vector<glm::vec3> & , std::vector<unsigned short> & , std::vector<glm::vec3> & , std::vector<glm::vec2> & , std::vector<glm::vec3> & ); void indexVBO_TBN( std::vector<glm::vec3> &, std::vector<glm::vec2> &, std::vector<glm::vec3> &, std::vector<glm::vec3> &, std::vector<glm::vec3> &, std::vector<unsigned short> &, std::vector<glm::vec3> &, std::vector<glm::vec2> &, std::vector<glm::vec3> &, std::vector<glm::vec3> &, std::vector<glm::vec3> & ); //mouse-keyboard input void computeMatricesFromInputs(); glm::mat4 getViewMatrix(); glm::mat4 getProjectionMatrix(); glm::mat4 ViewMatrix; glm::mat4 ProjectionMatrix; glm::mat4 getViewMatrix() { return ViewMatrix; } glm::mat4 getProjectionMatrix() { return ProjectionMatrix; } struct PackedVertex { glm::vec3 position; glm::vec2 uv; glm::vec3 normal; bool operator<(const PackedVertex that) const { return memcmp((void*)this, (void*)&that, sizeof(PackedVertex))>0; }; }; bool is_near(float v1, float v2) { return fabs(v1 - v2) < 0.01f; } bool getSimilarVertexIndex_fast( PackedVertex & packed, std::map<PackedVertex, unsigned short> & VertexToOutIndex, unsigned short & result ) { std::map<PackedVertex, unsigned short>::iterator it = VertexToOutIndex.find(packed); if (it == VertexToOutIndex.end()) { return false; } else { result = it->second; return true; } } bool getSimilarVertexIndex( glm::vec3 & in_vertex, glm::vec2 & in_uv, glm::vec3 & in_normal, std::vector<glm::vec3> & out_vertices, std::vector<glm::vec2> & out_uvs, std::vector<glm::vec3> & out_normals, unsigned short & result ) { // Lame linear search for (unsigned int i = 0; i<out_vertices.size(); i++) { if ( is_near(in_vertex.x, out_vertices[i].x) && is_near(in_vertex.y, out_vertices[i].y) && is_near(in_vertex.z, out_vertices[i].z) && is_near(in_uv.x, out_uvs[i].x) && is_near(in_uv.y, out_uvs[i].y) && is_near(in_normal.x, out_normals[i].x) && is_near(in_normal.y, out_normals[i].y) && is_near(in_normal.z, out_normals[i].z) ) { result = i; return true; } } // No other vertex could be used instead. // Looks like we'll have to add it to the VBO. return false; } void computeTangentBasis( //inputs std::vector<glm::vec3> &, std::vector<glm::vec2> &, std::vector<glm::vec3> &, //outputs std::vector<glm::vec3> &, std::vector<glm::vec3> & ); //text2D unsigned int Text2DTextureID; unsigned int Text2DVertexBufferID; unsigned int Text2DUVBufferID; unsigned int Text2DShaderID; unsigned int Text2DUniformID; void initText2D(const char *); void printText2D(const char *, int, int, int); void cleanupText2D(); //포지션 초기화 glm::vec3 position = glm::vec3(0, 0, 5); float horizontalAngle = 3.14f; float verticalAngle = 0.0f; float initialFoV = 45.0f; float speed = 3.0f; float mouseSpeed = 0.005f; void APIENTRY DebugOutputCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam) { printf("OpenGL Debug Output message : "); if (source == GL_DEBUG_SOURCE_API_ARB) printf("Source : API; "); else if (source == GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB) printf("Source : WINDOW_SYSTEM; "); else if (source == GL_DEBUG_SOURCE_SHADER_COMPILER_ARB) printf("Source : SHADER_COMPILER; "); else if (source == GL_DEBUG_SOURCE_THIRD_PARTY_ARB) printf("Source : THIRD_PARTY; "); else if (source == GL_DEBUG_SOURCE_APPLICATION_ARB) printf("Source : APPLICATION; "); else if (source == GL_DEBUG_SOURCE_OTHER_ARB) printf("Source : OTHER; "); if (type == GL_DEBUG_TYPE_ERROR_ARB) printf("Type : ERROR; "); else if (type == GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB) printf("Type : DEPRECATED_BEHAVIOR; "); else if (type == GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB) printf("Type : UNDEFINED_BEHAVIOR; "); else if (type == GL_DEBUG_TYPE_PORTABILITY_ARB) printf("Type : PORTABILITY; "); else if (type == GL_DEBUG_TYPE_PERFORMANCE_ARB) printf("Type : PERFORMANCE; "); else if (type == GL_DEBUG_TYPE_OTHER_ARB) printf("Type : OTHER; "); if (severity == GL_DEBUG_SEVERITY_HIGH_ARB) printf("Severity : HIGH; "); else if (severity == GL_DEBUG_SEVERITY_MEDIUM_ARB) printf("Severity : MEDIUM; "); else if (severity == GL_DEBUG_SEVERITY_LOW_ARB) printf("Severity : LOW; "); //break point를 여기에 설정해라, 당신의 디버거는 프로그램을 멈출 것이다 //callstack은 바로 너에게 offending call을 보여줄 것이다 printf("Mesage : %s\n", message); } int main() { // Initialise GLFW if (!glfwInit()) { fprintf(stderr, "Failed to initialize GLFW\n"); getchar(); return -1; } glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // Open a window and create its OpenGL context window = glfwCreateWindow(1024, 768, "QBOT_opengl", NULL, NULL); if (window == NULL) { fprintf(stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n"); getchar(); glfwTerminate(); return -1; } glfwMakeContextCurrent(window); int windowWidth = 1024; int windowHeight = 768; glfwGetFramebufferSize(window, &windowWidth, &windowHeight); // Initialize GLEW glewExperimental = true; if (glewInit() != GLEW_OK) { fprintf(stderr, "Failed to initialize GLEW\n"); getchar(); glfwTerminate(); return -1; } // Example 1: /*if (GLEW_AMD_seamless_cubemap_per_texture) { printf("The GL_AMD_seamless_cubemap_per_texture is present, (but we're not goint to use it)\n"); //이제 glTexParameterf를 TEXTURE_CUBE_MAP_SEAMLESS_ARB 매개 변수와 함께 호출하는 것이 합법적이다 //분명히 이 코드는 AMD가 아닌 하드웨어에서는 실표할 것이기 때문에 테스트해야한다 } // Example 2: if (GLEW_ARB_debug_output) { printf("The OpenGL implementation provides debug output. Let's use it!\n"); glDebugMessageCallbackARB(&DebugOutputCallback, NULL); glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB); } else { printf("ARB_debug_output unavailable. You have to use glGetError() and/or gDebugger to catch mistakes.\n"); }*/ // Ensure we can capture the escape key being pressed below glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE); glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // Set the mouse at the center of the screen glfwPollEvents(); glfwSetCursorPos(window, 1024 / 2, 768 / 2); // Dark blue background glClearColor(0.0f, 0.0f, 0.4f, 0.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glEnable(GL_CULL_FACE); GLuint VertexArrayID; glGenVertexArrays(1, &VertexArrayID); glBindVertexArray(VertexArrayID); //Shader를 불러온다. //GLuint programID = LoadShaders("NormalMapping.vertexshader", "NormalMapping.fragmentshader"); //GLuint programID = LoadShaders("StandardShadingRTT.vertexshader", "StandardShadingRTT.fragmentshader"); GLuint programID = LoadShaders("TransformVertexShader.vertexshader", "TextureFragmentShaderLOD.fragmentshader"); //매트릭스ID 추가 GLuint MatrixID = glGetUniformLocation(programID, "MVP"); GLuint ViewMatrixID = glGetUniformLocation(programID, "V"); GLuint ModelMatrixID = glGetUniformLocation(programID, "M"); GLuint ModelView3x3MatrixID = glGetUniformLocation(programID, "MV3x3"); //어떠한 두 가지의 함수를 사용해서 텍스처를 불러온다 //GLuint Texture = loadBMP_custom("uvtemplate.bmp"); //GLuint Texture = loadDDS("uvmap.DDS"); //GLuint DiffuseTexture = loadDDS("diffuse.DDS"); //GLuint NormalTexture = loadBMP_custom("normal.bmp"); //GLuint SpecularTexture = loadDDS("specular.DDS"); GLuint Texture = loadDDS("lightmap.DDS"); GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler"); //GLuint DiffuseTextureID = glGetUniformLocation(programID, "DiffuseTextureSampler"); //GLuint NormalTextureID = glGetUniformLocation(programID, "NormalTextureSampler"); //GLuint SpecularTextureID = glGetUniformLocation(programID, "SpecularTextureSampler"); //우리의 .obj file을 읽는다 std::vector<glm::vec3> vertices; std::vector<glm::vec2> uvs; std::vector<glm::vec3> normals; bool res = loadOBJ("room.obj", vertices, uvs, normals); /* std::vector<glm::vec3> tangents; std::vector<glm::vec3> bitangents; computeTangentBasis( vertices, uvs, normals, // input tangents, bitangents // output ); *//* std::vector<unsigned short> indices; std::vector<glm::vec3> indexed_vertices; std::vector<glm::vec2> indexed_uvs; std::vector<glm::vec3> indexed_normals; indexVBO(vertices, uvs, normals, indices, indexed_vertices, indexed_uvs, indexed_normals); //std::vector<glm::vec3> indexed_tangents; //std::vector<glm::vec3> indexed_bitangents; /*indexVBO_TBN( vertices, uvs, normals, tangents, bitangents, indices, indexed_vertices, indexed_uvs, indexed_normals, indexed_tangents, indexed_bitangents );*/ GLuint vertexbuffer; glGenBuffers(1, &vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec3), &vertices[0], GL_STATIC_DRAW); GLuint uvbuffer; glGenBuffers(1, &uvbuffer); glBindBuffer(GL_ARRAY_BUFFER, uvbuffer); glBufferData(GL_ARRAY_BUFFER, uvs.size() * sizeof(glm::vec2), &uvs[0], GL_STATIC_DRAW); /* GLuint normalbuffer; glGenBuffers(1, &normalbuffer); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer); glBufferData(GL_ARRAY_BUFFER, indexed_normals.size() * sizeof(glm::vec3), &indexed_normals[0], GL_STATIC_DRAW); *//* GLuint tangentbuffer; glGenBuffers(1, &tangentbuffer); glBindBuffer(GL_ARRAY_BUFFER, tangentbuffer); glBufferData(GL_ARRAY_BUFFER, indexed_tangents.size() * sizeof(glm::vec3), &indexed_tangents[0], GL_STATIC_DRAW); GLuint bitangentbuffer; glGenBuffers(1, &bitangentbuffer); glBindBuffer(GL_ARRAY_BUFFER, bitangentbuffer); glBufferData(GL_ARRAY_BUFFER, indexed_bitangents.size() * sizeof(glm::vec3), &indexed_bitangents[0], GL_STATIC_DRAW); */ // Generate a buffer for the indices as well /*GLuint elementbuffer; glGenBuffers(1, &elementbuffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW); glUseProgram(programID); GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace"); // render to texture // framebuffer, 0,1 or 더 많은 텍스처로 재그룹된다. 그리고 0 or 1 깊이 버퍼 GLuint FramebufferName = 0; glGenFramebuffers(1, &FramebufferName); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName); GLuint renderedTexture; glGenTextures(1, &renderedTexture); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName); //새롭게 만들어진 텍스처를 "bind" : 모든 미래 텍스처 기능들은 이 텍스처에 수정 glBindTexture(GL_TEXTURE_2D, renderedTexture); //비어있는 이미지를 OpenGL에 준다 (마지막 0은 비어있음을 의미) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, windowWidth, windowHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, 0); //Poor filtering glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //The depth buffer GLuint depthrenderbuffer; glGenRenderbuffers(1, &depthrenderbuffer); glBindRenderbuffer(GL_RENDERBUFFER, depthrenderbuffer); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, windowWidth, windowHeight); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthrenderbuffer); //// Alternative : Depth texture. Slower, but you can sample it later in your shader GLuint depthTexture; glGenTextures(1, &depthTexture); glBindTexture(GL_TEXTURE_2D, depthTexture); glTexImage2D(GL_TEXTURE_2D, 0,GL_DEPTH_COMPONENT24, 1024, 768, 0,GL_DEPTH_COMPONENT, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // "renderedTexture" 우리의 색을 입힌다 glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, renderedTexture, 0); //// Depth texture alternative : //glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthTexture, 0); // Set the list of draw buffers. GLenum DrawBuffers[1] = { GL_COLOR_ATTACHMENT0 }; glDrawBuffers(1, DrawBuffers); // "1" is the size of DrawBuffers // Always check that our framebuffer is ok if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) return false; // The fullscreen quad's FBO static const GLfloat g_quad_vertex_buffer_data[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, -1.0f, 1.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f, }; GLuint quad_vertexbuffer; glGenBuffers(1, &quad_vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(g_quad_vertex_buffer_data), g_quad_vertex_buffer_data, GL_STATIC_DRAW); // Create and compile our GLSL program from the shaders GLuint quad_programID = LoadShaders("Passthrough.vertexshader", "WobblyTexture.fragmentshader"); GLuint texID = glGetUniformLocation(quad_programID, "renderedTexture"); GLuint timeID = glGetUniformLocation(quad_programID, "time"); //little text library를 초기화 //initText2D("Holstein.DDS"); */ //speed computation double lastTime = glfwGetTime(); int nbFrames = 0; //enable blending //glEnable(GL_BLEND); //glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); do { //속도 측정 double currentTime = glfwGetTime(); nbFrames++; if (currentTime - lastTime >= 1.0) { printf("%f ms/frame\n", 1000.0 / double(nbFrames)); nbFrames = 0; lastTime += 1.0; } // framebuffer에 render // glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName); // glViewport(0, 0, windowWidth, windowHeight); // Clear the screen. It's not mentioned before Tutorial 02, but it can cause flickering, so it's there nonetheless. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(programID); //키보드와 마우스 인풋으로부터의 MVP 매트릭스를 계산한다 computeMatricesFromInputs(); glm::mat4 ProjectionMatrix = getProjectionMatrix(); glm::mat4 ViewMatrix = getViewMatrix(); glm::mat4 ModelMatrix = glm::mat4(1.0); //glm::mat4 ModelViewMatrix = ViewMatrix * ModelMatrix; //glm::mat3 ModelView3x3Matrix = glm::mat3(ModelViewMatrix); glm::mat4 MVP = ProjectionMatrix*ViewMatrix*ModelMatrix; //transformation을 현재 쉐이더에 보냄 glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]); //glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]); //glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]); //glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]); //glUniformMatrix3fv(ModelView3x3MatrixID, 1, GL_FALSE, &ModelView3x3Matrix[0][0]); //glm::vec3 lightPos = glm::vec3(4, 4, 4); //glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z); // 텍스처 유닛 0에 있는 텍스처를 바인드 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, Texture); glUniform1i(TextureID, 0); // //텍스처 유닛0에 있는 텍스처를 바인딩한다. /* glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, DiffuseTexture); glUniform1i(DiffuseTextureID, 0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, NormalTexture); glUniform1i(NormalTextureID, 1); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, SpecularTexture); glUniform1i(SpecularTextureID, 2); */ glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glVertexAttribPointer( 0, //0번째 속성. 0이 될 특별한 이유는 없지만 쉐이더의 레이아웃과 반드시 맞춰야함 3, //크기(size) GL_FLOAT, //타입(type) GL_FALSE, //정규화(normalized)? 0, //다음 요소까지의 간격(stride) (void*)0 //배열 버퍼의 오프셋(offset) ); //2nd 속성 버퍼 : UVs glEnableVertexAttribArray(1); glBindBuffer(GL_ARRAY_BUFFER, uvbuffer); glVertexAttribPointer( 1, 2, GL_FLOAT, GL_FALSE, 0, (void*)0 ); /* //3rd 속성 버퍼 : normals glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer); glVertexAttribPointer( 2, 3, GL_FLOAT, GL_FALSE, 0, (void*)0 );*/ /* // 4th attribute buffer : tangents glEnableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, tangentbuffer); glVertexAttribPointer( 3, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // 5th attribute buffer : bitangents glEnableVertexAttribArray(4); glBindBuffer(GL_ARRAY_BUFFER, bitangentbuffer); glVertexAttribPointer( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); */ // Index 버퍼 //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer); /* // 삼각형 그리기 glDrawElements( GL_TRIANGLES, //mode indices.size(), //count GL_UNSIGNED_SHORT, //type (void*)0 //element array buffer offset );*/ glDrawArrays(GL_TRIANGLES, 0, vertices.size()); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); //glDisableVertexAttribArray(2); //glDisableVertexAttribArray(3); //glDisableVertexAttribArray(4); //char text[256]; //sprintf(text, "%.2f sec", glfwGetTime()); //printText2D(text, 10, 500, 60); //////////////////////////////////////////////////////// // DEBUG ONLY !!! // Don't use this in real code !! //////////////////////////////////////////////////////// /* glMatrixMode(GL_PROJECTION); glLoadMatrixf((const GLfloat*)&ProjectionMatrix[0]); glMatrixMode(GL_MODELVIEW); glm::mat4 MV = ViewMatrix * ModelMatrix; glLoadMatrixf((const GLfloat*)&MV[0]); glUseProgram(0); // normals glColor3f(0, 0, 1); glBegin(GL_LINES); for (unsigned int i = 0; i<indices.size(); i++) { glm::vec3 p = indexed_vertices[indices[i]]; glVertex3fv(&p.x); glm::vec3 o = glm::normalize(indexed_normals[indices[i]]); p += o*0.1f; glVertex3fv(&p.x); } glEnd(); // tangents glColor3f(1, 0, 0); glBegin(GL_LINES); for (unsigned int i = 0; i<indices.size(); i++) { glm::vec3 p = indexed_vertices[indices[i]]; glVertex3fv(&p.x); glm::vec3 o = glm::normalize(indexed_tangents[indices[i]]); p += o*0.1f; glVertex3fv(&p.x); } glEnd(); // bitangents glColor3f(0, 1, 0); glBegin(GL_LINES); for (unsigned int i = 0; i<indices.size(); i++) { glm::vec3 p = indexed_vertices[indices[i]]; glVertex3fv(&p.x); glm::vec3 o = glm::normalize(indexed_bitangents[indices[i]]); p += o*0.1f; glVertex3fv(&p.x); } glEnd(); // light pos glColor3f(1, 1, 1); glBegin(GL_LINES); glVertex3fv(&lightPos.x); lightPos += glm::vec3(1, 0, 0)*0.1f; glVertex3fv(&lightPos.x); lightPos -= glm::vec3(1, 0, 0)*0.1f; glVertex3fv(&lightPos.x); lightPos += glm::vec3(0, 1, 0)*0.1f; glVertex3fv(&lightPos.x); glEnd(); */ //스크린에 렌더 /* glBindFramebuffer(GL_FRAMEBUFFER, 0); //전체 framebuffer에 렌더, 왼쪽 아래부터 오른쪽 위 코너까지 완료 glViewport(0, 0, windowWidth, windowHeight); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(quad_programID); //텍스쳐 0에서 텍스처 바인드 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, renderedTexture); glUniform1i(texID, 0); glUniform1f(timeID, (float)(glfwGetTime()*10.0f)); // 1rst attribute buffer : vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer); glVertexAttribPointer( 0, // attribute 0. No particular reason for 0, but must match the layout in the shader. 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // Draw the triangles ! glDrawArrays(GL_TRIANGLES, 0, 6); // 2*3 indices starting at 0 -> 2 triangles glDisableVertexAttribArray(0); */ // Swap buffersz glfwSwapBuffers(window); glfwPollEvents(); } // Check if the ESC key was pressed or the window was closed while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS && glfwWindowShouldClose(window) == 0); // Cleanup VBO and shader glDeleteBuffers(1, &vertexbuffer); glDeleteBuffers(1, &uvbuffer); //glDeleteBuffers(1, &normalbuffer); //glDeleteBuffers(1, &tangentbuffer); //glDeleteBuffers(1, &bitangentbuffer); //glDeleteBuffers(1, &elementbuffer); glDeleteProgram(programID); glDeleteTextures(1, &TextureID); //glDeleteTextures(1, &DiffuseTexture); //glDeleteTextures(1, &NormalTexture); //glDeleteTextures(1, &SpecularTexture); //glDeleteFramebuffers(1, &FramebufferName); //glDeleteTextures(1, &renderedTexture); //glDeleteRenderbuffers(1, &depthrenderbuffer); //glDeleteBuffers(1, &quad_vertexbuffer); //glDeleteVertexArrays(1, &VertexArrayID); // Close OpenGL window and terminate GLFW glfwTerminate(); return 0; } GLuint LoadShaders(const char * vertex_file_path, const char * fragment_file_path) { //쉐이더 생성 GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER); GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER); //버텍스 쉐이더 코드를 파일에서 읽기 std::string VertexShaderCode; std::ifstream VertexShaderStream(vertex_file_path, std::ios::in); if (VertexShaderStream.is_open()) { std::stringstream sstr; sstr << VertexShaderStream.rdbuf(); VertexShaderCode = sstr.str(); VertexShaderStream.close(); } else { printf("파일 %s를 읽을 수 없음. 정확한 디렉토리를 사용 중입니까?\n", vertex_file_path); getchar(); return 0; } //프래그먼트 쉐이더 코드를 파일에서 읽기 std::string FragmentShaderCode; std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in); if (FragmentShaderStream.is_open()) { std::stringstream sstr; sstr << FragmentShaderStream.rdbuf(); FragmentShaderCode = sstr.str(); FragmentShaderStream.close(); } GLint Result = GL_FALSE; int InfoLogLength; //버텍스 쉐이더를 컴파일 printf("Compiling shader : %s\n", vertex_file_path); char const * VertexSourcePointer = VertexShaderCode.c_str(); glShaderSource(VertexShaderID, 1, &VertexSourcePointer, NULL); glCompileShader(VertexShaderID); //버텍스 쉐이더를 검사 glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result); glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength); if (InfoLogLength > 0) { std::vector<char> VertexShaderErrorMessage(InfoLogLength + 1); glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL, &VertexShaderErrorMessage[0]); printf("%s\n", &VertexShaderErrorMessage[0]); } //프래그먼트 쉐이더를 컴파일 printf("Compiling shader : %s", fragment_file_path); char const * FragmentSourcePointer = FragmentShaderCode.c_str(); glShaderSource(FragmentShaderID, 1, &FragmentSourcePointer, NULL); glCompileShader(FragmentShaderID); //프래그먼트 쉐이더를 검사 glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result); glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength); if (InfoLogLength > 0) { std::vector<char> FragmentShaderErrorMessage(InfoLogLength + 1); glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL, &FragmentShaderErrorMessage[0]); printf("%s\n", &FragmentShaderErrorMessage[0]); } //프로그램에 링크 printf("Linking program\n"); GLuint ProgramID = glCreateProgram(); glAttachShader(ProgramID, VertexShaderID); glAttachShader(ProgramID, FragmentShaderID); glLinkProgram(ProgramID); //프로그램 검사 glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result); glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength); if (InfoLogLength > 0) { std::vector<char> ProgramErrorMessage(InfoLogLength + 1); glGetProgramInfoLog(ProgramID, InfoLogLength, NULL, &ProgramErrorMessage[0]); printf("%s\n", &ProgramErrorMessage[0]); } glDetachShader(ProgramID, VertexShaderID); glDetachShader(ProgramID, FragmentShaderID); glDeleteShader(VertexShaderID); glDeleteShader(FragmentShaderID); return ProgramID; } GLuint loadBMP_custom(const char * imagepath) { printf("Reading image %s\n", imagepath); //BMP파일의 헤더에서 데이터를 읽는다 unsigned char header[54]; unsigned int dataPos; unsigned int imageSize; unsigned int width, height; //실제 RGB 데이터 unsigned char * data; //파일을 연다 FILE * file = fopen(imagepath, "rb"); if (!file) { printf("%s는 열수 없다. 경로가 맞는지 확인해라.\n", imagepath); getchar(); return 0; } //헤더를 읽는다, i.e. the 54 first bytes //만약 54 bytes보다 적게 읽혔으면 문제 발생 if (fread(header, 1, 54, file) != 54) { printf("BMP 파일이 아니다\n"); return 0; } //A BMP 파일은 항상 "BM"으로 시작한다. if (header[0] != 'B' || header[1] != 'M') { printf("BMP 파일이 아니다\n"); return 0; } //24pp file임을 확인한다. if (*(int*)&(header[0x1e]) != 0 || *(int*)&(header[0x1C]) != 24) { printf("BMP 파일이 아니다\n"); return 0; } //이미지에 대한 정보를 읽는다. dataPos = *(int*)&(header[0x0A]); imageSize = *(int*)&(header[0x22]); width = *(int*)&(header[0x12]); height = *(int*)&(header[0x16]); //몇몇 BMP 파일들은 포맷이 놓쳐졌다, 놓쳐진 정보를 추측해라 if (imageSize == 0) imageSize = width*height * 3; // 3 : one byte for each Red-Green-Blue component if (dataPos == 0) dataPos = 54; //BMP 헤더는 항상 이 형식 //버퍼를 생성한다 data = new unsigned char[imageSize]; //파일의 버퍼에 있는 실제 데이터를 읽는다 fread(data, 1, imageSize, file); //모든 것은 현재 메모리에 있다, 파일을 닫는다 fclose(file); //openGL 텍스처를 만든다 GLuint textureID; glGenTextures(1, &textureID); //새로이 만들어진 텍스처를 바인딩한다. glBindTexture(GL_TEXTURE_2D, textureID); //이미지를 OpenGL에게 넘긴다 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data); delete[] data; // trilinear(삼선형) 필터링 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glGenerateMipmap(GL_TEXTURE_2D); return textureID; } GLuint loadDDS(const char * imagepath) { unsigned char header[124]; FILE *fp; //파일을 연다 fp = fopen(imagepath, "rb"); if (fp == NULL) { printf("%s는 열 수 없다. 경로를 확인해라\n", imagepath); getchar(); return 0; } //파일의 타입을 확인한다 char filecode[4]; fread(filecode, 1, 4, fp); if (strncmp(filecode, "DDS ", 4) != 0) { fclose(fp); return 0; } //surface desc를 얻는다 fread(&header, 124, 1, fp); unsigned int height = *(unsigned int*)&(header[8]); unsigned int width = *(unsigned int*)&(header[12]); unsigned int linearSize = *(unsigned int*)&(header[16]); unsigned int mipMapCount = *(unsigned int*)&(header[24]); unsigned int fourCC = *(unsigned int*)&(header[80]); unsigned char * buffer; unsigned int bufsize; bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize; buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char)); fread(buffer, 1, bufsize, fp); fclose(fp); unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4; unsigned int format; switch (fourCC) { case FOURCC_DXT1: format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case FOURCC_DXT3: format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case FOURCC_DXT5: format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; default: free(buffer); return 0; } //하나의 OpenGL 텍스처를 생성한다 GLuint textureID; glGenTextures(1, &textureID); //새로이 만들어진 텍스처를 바인딩한다 glBindTexture(GL_TEXTURE_2D, textureID); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16; unsigned int offset = 0; //밉맵을 불러온다 for (unsigned int level = 0; level < mipMapCount && (width || height); ++level) { unsigned int size = ((width + 3) / 4)*((height + 3) / 4)*blockSize; glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height, 0, size, buffer + offset); offset += size; width /= 2; height /= 2; //Non-Power-Of-Two 텍스처를 사용합니다. //이 코드는 혼란을 줄이기 위해 웹 페이지에는 포함되어 있지 않습니다. if (width < 1)width = 1; if (height < 1) height = 1; } free(buffer); return textureID; } bool loadOBJ( const char * path, std::vector<glm::vec3> & out_vertices, std::vector<glm::vec2> & out_uvs, std::vector<glm::vec3> & out_normals ) { printf("OBJ 파일 로딩중 %s...\n", path); std::vector<unsigned int> vertexIndices, uvIndices, normalIndices; std::vector<glm::vec3> temp_vertices; std::vector <glm::vec2> temp_uvs; std::vector<glm::vec3> temp_normals; FILE * file = fopen(path, "r"); if (file == NULL) { printf("파일 경로를 확인하세요!\n"); getchar(); return false; } while (1) { char lineHeader[128]; //첫번째 라인의 첫번째 단어를 읽는다 int res = fscanf(file, "%s", lineHeader); if (res == EOF) break; //else : 라인의 헤더를 parse if (strcmp(lineHeader, "v") == 0) { glm::vec3 vertex; fscanf(file, "%f %f %f\n", &vertex.x, &vertex.y, &vertex.z); temp_vertices.push_back(vertex); } else if (strcmp(lineHeader, "vt") == 0) { glm::vec2 uv; fscanf(file, "%f %f\n", &uv.x, &uv.y); uv.y = -uv.y; //우리가 DDS texture만을 이용할 것이므로 V의 좌표를 반대로 바꾸어준다. 만약 TGA or BMP 로더를 사용하면 이 것을 제거해라. temp_uvs.push_back(uv); } else if (strcmp(lineHeader, "vn") == 0) { glm::vec3 normal; fscanf(file, "%f %f %f\n", &normal.x, &normal.y, &normal.z); temp_normals.push_back(normal); } else if (strcmp(lineHeader, "f") == 0) { std::string vertex1, vertex2, vertex3; unsigned int vertexIndex[3], uvIndex[3], normalIndex[3]; int matches = fscanf(file,"%d/%d/%d %d/%d/%d %d/%d/%d\n", &vertexIndex[0], &uvIndex[0], &normalIndex[0], &vertexIndex[1], &uvIndex[1], &normalIndex[1], &vertexIndex[2], &uvIndex[2], &normalIndex[2]); if (matches != 9) { printf("파일을 읽을수없다."); return false; } vertexIndices.push_back(vertexIndex[0]); vertexIndices.push_back(vertexIndex[1]); vertexIndices.push_back(vertexIndex[2]); uvIndices.push_back(uvIndex[0]); uvIndices.push_back(uvIndex[1]); uvIndices.push_back(uvIndex[2]); normalIndices.push_back(normalIndex[0]); normalIndices.push_back(normalIndex[1]); normalIndices.push_back(normalIndex[2]); } else { //나머지 라인을 먹는다. char stupidBuffer[1000]; fgets(stupidBuffer, 1000, file); } } //각 삼각형의 각 꼭지점 for (unsigned int i = 0; i < vertexIndices.size(); i++) { //속성의 인덱스를 가져온다 unsigned int vertexIndex = vertexIndices[i]; unsigned int uvIndex = uvIndices[i]; unsigned int normalIndex = normalIndices[i]; //인덱스에서 속성을 가져온다 glm::vec3 vertex = temp_vertices[vertexIndex - 1]; glm::vec2 uv = temp_uvs[uvIndex - 1]; glm::vec3 normal = temp_normals[normalIndex - 1]; //버퍼에 속성을 넣는다 out_vertices.push_back(vertex); out_uvs.push_back(uv); out_normals.push_back(normal); } return true; } void indexVBO( std::vector<glm::vec3> & in_vertices, std::vector<glm::vec2> & in_uvs, std::vector<glm::vec3> & in_normals, std::vector<unsigned short> & out_indices, std::vector<glm::vec3> & out_vertices, std::vector<glm::vec2> & out_uvs, std::vector<glm::vec3> & out_normals ) { std::map<PackedVertex, unsigned short> VertexToOutIndex; //각 input vertex를 위해 for (unsigned int i = 0; i < in_vertices.size(); i++) { PackedVertex packed = { in_vertices[i], in_uvs[i], in_normals[i] }; //out_XXXX에서 비슷한 vertex를 찾는다 unsigned short index; bool found = getSimilarVertexIndex_fast(packed, VertexToOutIndex, index); if (found) { //비슷한 vertex가 VBO에 이미 있다면 대신 사용한다 out_indices.push_back(index); } else { //아니라면 이것은 아웃풋 데이터 추가가 필요하다 out_vertices.push_back(in_vertices[i]); out_uvs.push_back(in_uvs[i]); out_normals.push_back(in_normals[i]); unsigned short newindex = (unsigned short)out_vertices.size() - 1; out_indices.push_back(newindex); VertexToOutIndex[packed] = newindex; } } } void indexVBO_TBN( std::vector<glm::vec3> & in_vertices, std::vector<glm::vec2> & in_uvs, std::vector<glm::vec3> & in_normals, std::vector<glm::vec3> & in_tangents, std::vector<glm::vec3> & in_bitangents, std::vector<unsigned short> & out_indices, std::vector<glm::vec3> & out_vertices, std::vector<glm::vec2> & out_uvs, std::vector<glm::vec3> & out_normals, std::vector<glm::vec3> & out_tangents, std::vector<glm::vec3> & out_bitangents ) { //각 input vertex를 위해 for (unsigned int i = 0; i < in_vertices.size(); i++) { //out_XXXX 에서 비슷한 vertex를 찾는다 unsigned short index; bool found = getSimilarVertexIndex(in_vertices[i], in_uvs[i], in_normals[i], out_vertices, out_uvs, out_normals, index); if (found) { //비슷한 vertex가 이미 VBO에 있으면, 이것을 대신 사용 out_indices.push_back(index); //tangents와 bitangents의 평균을 한다 out_tangents[index] += in_tangents[i]; out_bitangents[index] += in_bitangents[i]; } else { // 만약 아니라면, output data에서 추가한다 out_vertices.push_back(in_vertices[i]); out_uvs.push_back(in_uvs[i]); out_normals.push_back(in_normals[i]); out_tangents.push_back(in_tangents[i]); out_bitangents.push_back(in_bitangents[i]); out_indices.push_back((unsigned short)out_vertices.size() - 1); } } } void computeMatricesFromInputs() { //glfwGetTime은 한번만 호출된다. static double lastTime = glfwGetTime(); //현재와 마지막 프레임의 시간 차를 계산한다. double currentTime = glfwGetTime(); float deltaTime = float(currentTime - lastTime); //마우스의 위치를 얻는다. double xpos, ypos; glfwGetCursorPos(window, &xpos, &ypos); //다음 프레임의 마우스 위치를 리셋한다. glfwSetCursorPos(window, 1024 / 2, 768 / 2); horizontalAngle += mouseSpeed * float(1024 / 2 - xpos); verticalAngle += mouseSpeed * float(768 / 2 - ypos); //Direction : Spherical 좌표 to Cartesian 좌표 변환 glm::vec3 direction( cos(verticalAngle)*sin(horizontalAngle), sin(verticalAngle), cos(verticalAngle)*cos(horizontalAngle) ); //Right vector glm::vec3 right = glm::vec3( sin(horizontalAngle - 3.14f / 2.0f), 0, cos(horizontalAngle - 3.14f / 2.0f) ); //Up vector glm::vec3 up = glm::cross(right, direction); //앞으로 이동 if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) { position += direction*deltaTime*speed; } //뒤로 이동 if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) { position -= direction*deltaTime*speed; } //오른쪽로 Strafe if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) { position += right*deltaTime*speed; } //왼쪽으로 Strafe if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) { position -= right*deltaTime*speed; } float FoV = initialFoV; ProjectionMatrix = glm::perspective(FoV, 4.0f / 3.0f, 0.1f, 100.0f); ViewMatrix = glm::lookAt( position, //camera here position + direction, //and looks here up // Head is up ); //다음 프레임을 위해 lastTime = currentTime; } void computeTangentBasis( //inputs std::vector<glm::vec3> & vertices, std::vector<glm::vec2> & uvs, std::vector<glm::vec3> & normals, //outputs std::vector<glm::vec3> & tangents, std::vector<glm::vec3> & bitangents ) { for (unsigned int i = 0; i < vertices.size(); i += 3) { //shortcuts for vertices glm::vec3 & v0 = vertices[i + 0]; glm::vec3 & v1 = vertices[i + 1]; glm::vec3 & v2 = vertices[i + 2]; //shortcuts for UVs glm::vec2 & uv0 = uvs[i + 0]; glm::vec2 & uv1 = uvs[i + 1]; glm::vec2 & uv2 = uvs[i + 2]; //edges of the triangle : position delta glm::vec3 deltaPos1 = v1 - v0; glm::vec3 deltaPos2 = v2 - v0; //UV delta glm::vec2 deltaUV1 = uv1 - uv0; glm::vec2 deltaUV2 = uv2 - uv0; float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x); glm::vec3 tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y)*r; glm::vec3 bitangent = (deltaPos2 * deltaUV1.x - deltaPos1*deltaUV2.x)*r; //삼각형의 모든 세개의 정점을 위해 같은 tangent를 세팅한다. //그것들은 곧 병합될겉이다 tangents.push_back(tangent); tangents.push_back(tangent); tangents.push_back(tangent); //binormals를 위한 같은 것 bitangents.push_back(bitangent); bitangents.push_back(bitangent); bitangents.push_back(bitangent); } // "Going Further" 봐라 for (unsigned int i = 0; i < vertices.size(); i += 1) { glm::vec3 & n = normals[i]; glm::vec3 & t = tangents[i]; glm::vec3 & b = bitangents[i]; //Gram-Schmidt orthogonalize t = glm::normalize(t - n*glm::dot(n, t)); //handedness 계산 if (glm::dot(glm::cross(n, t), b) < 0.0f) { t = t*-1.0f; } } } void initText2D(const char * texturePath) { //텍스쳐 초기화 Text2DTextureID = loadDDS(texturePath); //VBO 초기화 glGenBuffers(1, &Text2DVertexBufferID); glGenBuffers(1, &Text2DUVBufferID); //Shader 초기화 Text2DShaderID = LoadShaders("TextVertexShader.vertexshader", "TextVertexShader.fragmentshader"); //uniforms' IDs 초기화 Text2DUniformID = glGetUniformLocation(Text2DShaderID, "myTextureSampler"); } void printText2D(const char * text, int x, int y, int size) { unsigned int length = strlen(text); //buffer 채우기 std::vector<glm::vec2> vertices; std::vector<glm::vec2> UVs; for (unsigned int i = 0; i < length; i++) { glm::vec2 vertex_up_left = glm::vec2(x + i*size, y + size); glm::vec2 vertex_up_right = glm::vec2(x + i*size+size, y + size); glm::vec2 vertex_down_right = glm::vec2(x + i*size+size, y); glm::vec2 vertex_down_left = glm::vec2(x + i*size, y); vertices.push_back(vertex_up_left); vertices.push_back(vertex_down_left); vertices.push_back(vertex_up_right); vertices.push_back(vertex_down_right); vertices.push_back(vertex_up_right); vertices.push_back(vertex_down_left); char character = text[i]; float uv_x = (character % 16) / 16.0f; float uv_y = (character / 16) / 16.0f; glm::vec2 uv_up_left = glm::vec2(uv_x, uv_y); glm::vec2 uv_up_right = glm::vec2(uv_x + 1.0f / 16.0f, uv_y); glm::vec2 uv_down_right = glm::vec2(uv_x+1.0f/16.0f, (uv_y+1.0f/16.0f)); glm::vec2 uv_down_left = glm::vec2(uv_x, (uv_y+1.0f/16.0f)); UVs.push_back(uv_up_left); UVs.push_back(uv_down_left); UVs.push_back(uv_up_right); UVs.push_back(uv_down_right); UVs.push_back(uv_up_right); UVs.push_back(uv_down_left); glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID); glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec2), &vertices[0], GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID); glBufferData(GL_ARRAY_BUFFER, UVs.size() * sizeof(glm::vec2), &UVs[0], GL_STATIC_DRAW); // Bind shader glUseProgram(Text2DShaderID); // Bind texture glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, Text2DTextureID); // Set our "myTextureSampler" sampler to user Texture Unit 0 glUniform1i(Text2DUniformID, 0); // 1rst attribute buffer : vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, (void*)0); // 2nd attribute buffer : UVs glEnableVertexAttribArray(1); glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, (void*)0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Draw call glDrawArrays(GL_TRIANGLES, 0, vertices.size()); glDisable(GL_BLEND); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } } void cleanupText2D() { // Delete buffers glDeleteBuffers(1, &Text2DVertexBufferID); glDeleteBuffers(1, &Text2DUVBufferID); // Delete texture glDeleteTextures(1, &Text2DTextureID); // Delete shader glDeleteProgram(Text2DShaderID); } | cs |
'Game > Graphics' 카테고리의 다른 글
OpenGL-Tutorial 17 : Rotations (2) | 2018.07.03 |
---|---|
OpenGL-Tutorial 16 : Shadow mapping (2) | 2018.07.02 |
OpenGL-Tutorial 14 : Render To Texture (0) | 2018.07.01 |
OpenGL-Tutorial 13 : Normal Mapping (0) | 2018.06.29 |
OpenGL-Tutorial 12 : OpenGL Extensions (6) | 2018.06.29 |