본문 바로가기

Game/Graphics

OpenGL-Tutorial 12 : OpenGL Extensions

link : http://www.opengl-tutorial.org/kr/intermediate-tutorials/tutorial-12-opengl-extensions/


12번째 튜토리얼 시작!



Extensions


새로운 세대마다 GPU의 성능이 향상되어 더 많은 삼각형과 더 많은 픽셀을 렌더링 할 수 있습니다. 


하지만, 원시 성능만이 유일한 관심사는 아니다.


NVIDIA, AMD 및 Intel은 더 많은 기능을 제공함으로써 그래픽 카드를 향상시킵니다. 몇 가지 예를 살펴보겠다.




ARB_fragment_program


2002년에는 GPU에 정점 셰이더나 조각 셰이더가 없고, 모든 것이 칩 내부에 하드 코드되었습니다.


이를 Fixed-Function Pipeline (FFP)라고 한다.


따라서 OpenGL 1.3인 API의 최신 버전은 존재하지 않았기 때문에 소위 "셰이더"를 생성, 조작 및 사용할 수 있는 방법이 없었다.


그러나 NVIDIA는 수백 개의 플래그 및 상태 변수 대신 실제 코드로 렌더링 프로세스를 설명하는 것이 편리할 수 있다고 판단했다.


이것은 ARB_fragment_program이 생성된 방법이다. GLSL이 없지만 대신 다음과 같이 작성할 수 있다.

!!ARBfp1.0 MOV result.color, fragment.color; END

하지만 분명히 OpenGL에 이러한 코드를 사용하도록 지시하려면 OpenGL에 아직 없는 특수 기능이 필요하다.


설명으로 넘어 가기 전에 한 가지 더 예를 들어보겠다.





ARB_debug_output


ARB_fragment_program은 너무 오래되어서 더 이상 필요하지 않다. 편리한 새로운 확장 기능이 ARB_debug_output에 존재한다.


OpenGL 3.3에는 존재하지 않지만 어쨌든 사용할 수 있는 기능을 제공한다. GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB 또는 


GL_DEBUG_SEVERITY_MEDIUM_ARB와 같은 토큰과 DebugMessageCallbackARB와 같은 토큰을 정의한다.


이 확장 기능의 가장 큰 장점은 잘못된 코드를 작성할 때마다 다음과 같은 이점이 있다는 것이다.

glEnable(GL_TEXTURE); // Incorrect ! You probably meant GL_TEXTURE_2D !

오류 메시지와 문제점의 정확한 위치를 알 수 있다.







Getting an extension - the hard way


검사를 위한 "manual" 방법은 OpenGL.org wiki에서 이 코드 스니펫을 사용하는 것이다.

int NumberOfExtensions;
glGetIntegerv(GL_NUM_EXTENSIONS, &NumberOfExtensions);
for(i=0; i<NumberOfExtensions; i++) {
  const GLubyte *ccc=glGetStringi(GL_EXTENSIONS, i);
  if ( strcmp(ccc, (const GLubyte *)"GL_ARB_debug_output") == 0 ){
    // The extension is supported by our hardware and driver
    // Try to get the "glDebugMessageCallbackARB" function :
    glDebugMessageCallbackARB  = (PFNGLDEBUGMESSAGECALLBACKARBPROC) wglGetProcAddress("glDebugMessageCallbackARB");
  }
}




Getting all extensions - the easy way


이 모든 것은 매우 복잡하다. GLEW, GLee, gl3w 등의 라이브러리는 훨씬 쉽게 만든다. 예를 들어 GLEW를 사용하면 


창을 만든 후에 glewinit()을 호출하면 유용한 변수가 만들어진다.

if (GLEW_ARB_debug_output){ // Ta-Dah ! }

(주의 : debug_output은 컨텍스트 생성시 활성화해야하기 때문에 특별하다. 


GLFW에서는 glfwOpenWindowHint(GLFW_OPENGL_DEBUG_CONTEXT,1);)로 수행된다.





ARB vs EXT vs ...


각 확장의 이름에는 가용성에 대한 정보가 들어있다.


GL_ : 모든 플랫폼

GLX_ : Linux 및 Mac 전용 (X11)

WGL_ : Windows 전용

EXT : 일반적인 확장자

ARB : OpenGL Architecture Review Board의 모든 구성원이 확장을 허용함




Designing with Extentions


The problem


OpenGL 3.3 응용 프로그램에서 큰 선을 렌더링해야 한다고 가정해보겠다. 이를 위해 복잡한 버텍스 쉐이더를 작성하거나 


GL_NV_path_rendering을 사용하면 모든 복잡한 작업을 처리할 수 있다.


따라서 다음과 같은 코드가 생성된다.

if ( GLEW_NV_path_rendering ){
    glPathStringNV( ... ); // Draw the shape. Easy !
}else{
    // Else what ? You still have to draw the lines
    // on older NVIDIA hardware, on AMD and on INTEL !
    // So you have to implement it yourself anyway !
}




Choosing the limit


렌더링 품질 또는 성능의 향상이 두 가지 다른 경로를 유지하는 데 따른 고통보다 중요 할 때 일반적으로 확장을 사용하도록 선택한다.


예를 들어, Braid(시간을 여행하는 2D게임)에는 이전 하드웨어에서 렌더링되지 않았던 시간을 낭비할 때 모든 종류의 이미지 왜곡 효과가 있었다.


OpenGL 3.3 이상에서는 당신이 필요한 99% 이상의 도구가 있다. 일부 확장은 GL_AMD_pinned_memory와 같이 매우 유용하지만,


GL_ARB_framebuffer_object(used for Render To Texture)를 사용하면 게임을 10배나 더 잘 보이게 할 수 있는 몇 년전과 같지 않은 경우가 많다.


그래도 오래된 하드웨어를 처리해야한다면 OpenGL 3+를 사용할 수 없으므로 OpenGL 2+를 사용해야한다.




Conclusion


OpenGL Extentions는 사용자의 GPU에 따라 OpenGL의 기능을 확장하는 좋은 방법을 제공한다.


대부분의 기능이 이미 핵심이기 때문에 확장 기능은 대부분 고급 사용을 위한 것이지만, 기능이 어떻게 작동하는지 그리고


소프트웨어를 개선하는데 사용할 수 있는 방법을 아는 것은 중요하다!



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <GL/glew.h>
#include <glfw3.h>
#include <GL/glew.h>
GLFWwindow* window;
 
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
using namespace glm;
 
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
 
GLuint LoadShaders(const char *const char *);
GLuint loadBMP_custom(const char *);
GLuint loadDDS(const char *);
bool loadOBJ(
    const char *,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &);
void indexVBO(
    std::vector<glm::vec3> & ,
    std::vector<glm::vec2> & ,
    std::vector<glm::vec3> & ,
 
    std::vector<unsigned short> & ,
    std::vector<glm::vec3> & ,
    std::vector<glm::vec2> & ,
    std::vector<glm::vec3> & 
);
 
 
//mouse-keyboard input
void computeMatricesFromInputs();
glm::mat4 getViewMatrix();
glm::mat4 getProjectionMatrix();
 
glm::mat4 ViewMatrix;
glm::mat4 ProjectionMatrix;
 
glm::mat4 getViewMatrix() {
    return ViewMatrix;
}
glm::mat4 getProjectionMatrix() {
    return ProjectionMatrix;
}
 
struct PackedVertex {
    glm::vec3 position;
    glm::vec2 uv;
    glm::vec3 normal;
    bool operator<(const PackedVertex that) const {
        return memcmp((void*)this, (void*)&that, sizeof(PackedVertex))>0;
    };
};
 
bool getSimilarVertexIndex_fast(
    PackedVertex & packed,
    std::map<PackedVertex, unsigned short> & VertexToOutIndex,
    unsigned short & result
) {
    std::map<PackedVertex, unsigned short>::iterator it = VertexToOutIndex.find(packed);
    if (it == VertexToOutIndex.end()) {
        return false;
    }
    else {
        result = it->second;
        return true;
    }
}
 
//text2D
unsigned int Text2DTextureID;
unsigned int Text2DVertexBufferID;
unsigned int Text2DUVBufferID;
unsigned int Text2DShaderID;
unsigned int Text2DUniformID;
 
void initText2D(const char *);
void printText2D(const char *intintint);
void cleanupText2D();
 
 
//포지션 초기화
glm::vec3 position = glm::vec3(005);
float horizontalAngle = 3.14f;
float verticalAngle = 0.0f;
float initialFoV = 45.0f;
 
float speed = 3.0f;
float mouseSpeed = 0.005f;
 
void APIENTRY DebugOutputCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam) {
 
    printf("OpenGL Debug Output message : ");
 
    if (source == GL_DEBUG_SOURCE_API_ARB) printf("Source : API; ");
    else if (source == GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB)    printf("Source : WINDOW_SYSTEM; ");
    else if (source == GL_DEBUG_SOURCE_SHADER_COMPILER_ARB)    printf("Source : SHADER_COMPILER; ");
    else if (source == GL_DEBUG_SOURCE_THIRD_PARTY_ARB)        printf("Source : THIRD_PARTY; ");
    else if (source == GL_DEBUG_SOURCE_APPLICATION_ARB)        printf("Source : APPLICATION; ");
    else if (source == GL_DEBUG_SOURCE_OTHER_ARB)            printf("Source : OTHER; ");
 
    if (type == GL_DEBUG_TYPE_ERROR_ARB)                        printf("Type : ERROR; ");
    else if (type == GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB)    printf("Type : DEPRECATED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB)    printf("Type : UNDEFINED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_PORTABILITY_ARB)            printf("Type : PORTABILITY; ");
    else if (type == GL_DEBUG_TYPE_PERFORMANCE_ARB)            printf("Type : PERFORMANCE; ");
    else if (type == GL_DEBUG_TYPE_OTHER_ARB)                printf("Type : OTHER; ");
 
    if (severity == GL_DEBUG_SEVERITY_HIGH_ARB)                printf("Severity : HIGH; ");
    else if (severity == GL_DEBUG_SEVERITY_MEDIUM_ARB)        printf("Severity : MEDIUM; ");
    else if (severity == GL_DEBUG_SEVERITY_LOW_ARB)            printf("Severity : LOW; ");
 
    //break point를 여기에 설정해라, 당신의 디버거는 프로그램을 멈출 것이다
    //callstack은 바로 너에게 offending call을 보여줄 것이다
    printf("Mesage : %s\n", message);
}
 
int main() {
 
    // Initialise GLFW
    if (!glfwInit())
    {
        fprintf(stderr, "Failed to initialize GLFW\n");
        getchar();
        return -1;
    }
 
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
 
    // Open a window and create its OpenGL context
    window = glfwCreateWindow(1024768"QBOT_opengl"NULLNULL);
    if (window == NULL) {
        fprintf(stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n");
        getchar();
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
 
    // Initialize GLEW
    glewExperimental = true;
    if (glewInit() != GLEW_OK) {
        fprintf(stderr, "Failed to initialize GLEW\n");
        getchar();
        glfwTerminate();
        return -1;
    }
 
    // Example 1:
    if (GLEW_AMD_seamless_cubemap_per_texture) {
        printf("The GL_AMD_seamless_cubemap_per_texture is present, (but we're not goint to use it)\n");
        //이제 glTexParameterf를 TEXTURE_CUBE_MAP_SEAMLESS_ARB 매개 변수와 함께 호출하는 것이 합법적이다
        //분명히 이 코드는 AMD가 아닌 하드웨어에서는 실표할 것이기 때문에 테스트해야한다
    }
 
    // Example 2:
    if (GLEW_ARB_debug_output) {
        printf("The OpenGL implementation provides debug output. Let's use it!\n");
        glDebugMessageCallbackARB(&DebugOutputCallback, NULL);
        glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
    }
    else {
        printf("ARB_debug_output unavailable. You have to use glGetError() and/or gDebugger to catch mistakes.\n");
    }
 
    // Ensure we can capture the escape key being pressed below
    glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
 
    // Set the mouse at the center of the screen
    glfwPollEvents();
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    // Dark blue background
    glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
 
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glEnable(GL_CULL_FACE);
 
    GLuint VertexArrayID;
    glGenVertexArrays(1&VertexArrayID);
    glBindVertexArray(VertexArrayID);
 
    //Shader를 불러온다.
    GLuint programID = LoadShaders("StandardShading.vertexshader""StandardShading.fragmentshader");
 
    //매트릭스ID 추가
    GLuint MatrixID = glGetUniformLocation(programID, "MVP");
    GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
    GLuint ModelMatrixID = glGetUniformLocation(programID, "M");
 
    //어떠한 두 가지의 함수를 사용해서 텍스처를 불러온다
    //GLuint Texture = loadBMP_custom("uvtemplate.bmp");
    GLuint Texture = loadDDS("uvmap.DDS");
 
    GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
 
    //우리의 .obj file을 읽는다
    std::vector<glm::vec3> vertices;
    std::vector<glm::vec2> uvs;
    std::vector<glm::vec3> normals;
    bool res = loadOBJ("suzanne.obj", vertices, uvs, normals);
 
    std::vector<unsigned short> indices;
    std::vector<glm::vec3> indexed_vertices;
    std::vector<glm::vec2> indexed_uvs;
    std::vector<glm::vec3> indexed_normals;
    indexVBO(vertices, uvs, normals, indices, indexed_vertices, indexed_uvs, indexed_normals);
    
    GLuint vertexbuffer;
    glGenBuffers(1&vertexbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_vertices.size() * sizeof(glm::vec3), &indexed_vertices[0], GL_STATIC_DRAW);
 
    GLuint uvbuffer;
    glGenBuffers(1&uvbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_uvs.size() * sizeof(glm::vec2), &indexed_uvs[0], GL_STATIC_DRAW);
 
    GLuint normalbuffer;
    glGenBuffers(1&normalbuffer);
    glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
    glBufferData(GL_ARRAY_BUFFER, indexed_normals.size() * sizeof(glm::vec3), &indexed_normals[0], GL_STATIC_DRAW);
 
    // Generate a buffer for the indices as well
    GLuint elementbuffer;
    glGenBuffers(1&elementbuffer);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW);
 
    glUseProgram(programID);
    GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace");
 
    //little text library를 초기화
    initText2D("Holstein.DDS");
 
    //speed computation
    double lastTime = glfwGetTime();
    int nbFrames = 0;
 
    //enable blending
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);    
 
    do {
        //속도 측정
        double currentTime = glfwGetTime();
        nbFrames++;
        if (currentTime - lastTime >= 1.0) {
            printf("%f ms/frame\n"1000.0 / double(nbFrames));
            nbFrames = 0;
            lastTime += 1.0;
        }
 
        // Clear the screen. It's not mentioned before Tutorial 02, but it can cause flickering, so it's there nonetheless.
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 
        glUseProgram(programID);
 
        //키보드와 마우스 인풋으로부터의 MVP 매트릭스를 계산한다
        computeMatricesFromInputs();
        glm::mat4 ProjectionMatrix = getProjectionMatrix();
        glm::mat4 ViewMatrix = getViewMatrix();
        glm::mat4 ModelMatrix = glm::mat4(1.0);
        glm::mat4 MVP = ProjectionMatrix*ViewMatrix*ModelMatrix;
 
        //transformation을 현재 쉐이더에 보냄
        glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
        glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
        glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
 
        glm::vec3 lightPos = glm::vec3(444);
        glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z);
 
        //텍스처 유닛0에 있는 텍스처를 바인딩한다.
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Texture);
 
        //1st 속성 버퍼 : vertices
        glUniform1i(TextureID, 0);
 
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
        glVertexAttribPointer(
            0,            //0번째 속성. 0이 될 특별한 이유는 없지만 쉐이더의 레이아웃과 반드시 맞춰야함
            3,            //크기(size)
            GL_FLOAT,    //타입(type)
            GL_FALSE,    //정규화(normalized)?
            0,            //다음 요소까지의 간격(stride)
            (void*)0    //배열 버퍼의 오프셋(offset)
        );
 
        //2nd 속성 버퍼 : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
        glVertexAttribPointer(
            1,
            2,
            GL_FLOAT,
            GL_FALSE,
            0,
            (void*)0
        );
 
        //3rd 속성 버퍼 : normals
        glEnableVertexAttribArray(2);
        glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
        glVertexAttribPointer(
            2,            
            3,            
            GL_FLOAT,
            GL_FALSE,
            0,
            (void*)0
        );
 
        // Index 버퍼
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
 
        // 삼각형 그리기
        glDrawElements(
            GL_TRIANGLES,        //mode
            indices.size(),        //count
            GL_UNSIGNED_SHORT,    //type
            (void*)0            //element array buffer offset
        );
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
        glDisableVertexAttribArray(2);
 
        char text[256];
        sprintf(text, "%.2f sec", glfwGetTime());
        printText2D(text, 1050060);
 
        // Swap buffers
        glfwSwapBuffers(window);
        glfwPollEvents();
 
    } // Check if the ESC key was pressed or the window was closed
    while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS &&
        glfwWindowShouldClose(window) == 0);
 
    // Cleanup VBO
    glDeleteBuffers(1&vertexbuffer);
    glDeleteBuffers(1&uvbuffer);
    glDeleteBuffers(1&normalbuffer);
    glDeleteBuffers(1&elementbuffer);
    glDeleteProgram(programID);
    glDeleteTextures(1&TextureID);
    glDeleteVertexArrays(1&VertexArrayID);
 
    // Close OpenGL window and terminate GLFW
    glfwTerminate();
 
    return 0;
}
 
GLuint LoadShaders(const char * vertex_file_path, const char * fragment_file_path) {
 
    //쉐이더 생성
    GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER);
    GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);
 
    //버텍스 쉐이더 코드를 파일에서 읽기
    std::string VertexShaderCode;
    std::ifstream VertexShaderStream(vertex_file_path, std::ios::in);
    if (VertexShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << VertexShaderStream.rdbuf();
        VertexShaderCode = sstr.str();
        VertexShaderStream.close();
    }
    else {
        printf("파일 %s를 읽을 수 없음. 정확한 디렉토리를 사용 중입니까?\n", vertex_file_path);
        getchar();
        return 0;
    }
 
    //프래그먼트 쉐이더 코드를 파일에서 읽기
    std::string FragmentShaderCode;
    std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in);
    if (FragmentShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << FragmentShaderStream.rdbuf();
        FragmentShaderCode = sstr.str();
        FragmentShaderStream.close();
    }
 
    GLint Result = GL_FALSE;
    int InfoLogLength;
 
    //버텍스 쉐이더를 컴파일
    printf("Compiling shader : %s\n", vertex_file_path);
    char const * VertexSourcePointer = VertexShaderCode.c_str();
    glShaderSource(VertexShaderID, 1&VertexSourcePointer, NULL);
    glCompileShader(VertexShaderID);
 
    //버텍스 쉐이더를 검사
    glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> VertexShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL&VertexShaderErrorMessage[0]);
        printf("%s\n"&VertexShaderErrorMessage[0]);
    }
 
    //프래그먼트 쉐이더를 컴파일
    printf("Compiling shader : %s", fragment_file_path);
    char const * FragmentSourcePointer = FragmentShaderCode.c_str();
    glShaderSource(FragmentShaderID, 1&FragmentSourcePointer, NULL);
    glCompileShader(FragmentShaderID);
 
    //프래그먼트 쉐이더를 검사
    glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> FragmentShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL&FragmentShaderErrorMessage[0]);
        printf("%s\n"&FragmentShaderErrorMessage[0]);
    }
 
    //프로그램에 링크
    printf("Linking program\n");
    GLuint ProgramID = glCreateProgram();
    glAttachShader(ProgramID, VertexShaderID);
    glAttachShader(ProgramID, FragmentShaderID);
    glLinkProgram(ProgramID);
 
    //프로그램 검사
    glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
    glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> ProgramErrorMessage(InfoLogLength + 1);
        glGetProgramInfoLog(ProgramID, InfoLogLength, NULL&ProgramErrorMessage[0]);
        printf("%s\n"&ProgramErrorMessage[0]);
    }
 
    glDetachShader(ProgramID, VertexShaderID);
    glDetachShader(ProgramID, FragmentShaderID);
 
    glDeleteShader(VertexShaderID);
    glDeleteShader(FragmentShaderID);
 
    return ProgramID;
}
 
GLuint loadBMP_custom(const char * imagepath) {
 
    printf("Reading image %s\n", imagepath);
 
    //BMP파일의 헤더에서 데이터를 읽는다
    unsigned char header[54];
    unsigned int dataPos;
    unsigned int imageSize;
    unsigned int width, height;
    //실제 RGB 데이터
    unsigned char * data;
 
    //파일을 연다
    FILE * file = fopen(imagepath, "rb");
    if (!file) {
        printf("%s는 열수 없다. 경로가 맞는지 확인해라.\n", imagepath);
        getchar();
        return 0;
    }
 
    //헤더를 읽는다, i.e. the 54 first bytes
 
    //만약 54 bytes보다 적게 읽혔으면 문제 발생
    if (fread(header, 154, file) != 54) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //A BMP 파일은 항상 "BM"으로 시작한다.
    if (header[0!= 'B' || header[1!= 'M') {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //24pp file임을 확인한다.
    if (*(int*)&(header[0x1e]) != 0 || *(int*)&(header[0x1C]) != 24) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
 
    //이미지에 대한 정보를 읽는다.
    dataPos = *(int*)&(header[0x0A]);
    imageSize = *(int*)&(header[0x22]);
    width = *(int*)&(header[0x12]);
    height = *(int*)&(header[0x16]);
 
    //몇몇 BMP 파일들은 포맷이 놓쳐졌다, 놓쳐진 정보를 추측해라
    if (imageSize == 0) imageSize = width*height * 3// 3 : one byte for each Red-Green-Blue component
    if (dataPos == 0) dataPos = 54//BMP 헤더는 항상 이 형식
 
    //버퍼를 생성한다
    data = new unsigned char[imageSize];
 
    //파일의 버퍼에 있는 실제 데이터를 읽는다
    fread(data, 1, imageSize, file);
 
    //모든 것은 현재 메모리에 있다, 파일을 닫는다
    fclose(file);
 
    //openGL 텍스처를 만든다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다.
    glBindTexture(GL_TEXTURE_2D, textureID);
 
    //이미지를 OpenGL에게 넘긴다
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data);
 
    delete[] data;
 
    // trilinear(삼선형) 필터링
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glGenerateMipmap(GL_TEXTURE_2D);
 
    return textureID;
}
 
GLuint loadDDS(const char * imagepath) {
 
    unsigned char header[124];
 
    FILE *fp;
 
    //파일을 연다
    fp = fopen(imagepath, "rb");
    if (fp == NULL) {
        printf("%s는 열 수 없다. 경로를 확인해라\n", imagepath);
        getchar();
        return 0;
    }
 
    //파일의 타입을 확인한다
    char filecode[4];
    fread(filecode, 14, fp);
    if (strncmp(filecode, "DDS "4!= 0) {
        fclose(fp);
        return 0;
    }
 
    //surface desc를 얻는다
    fread(&header, 1241, fp);
 
    unsigned int height = *(unsigned int*)&(header[8]);
    unsigned int width = *(unsigned int*)&(header[12]);
    unsigned int linearSize = *(unsigned int*)&(header[16]);
    unsigned int mipMapCount = *(unsigned int*)&(header[24]);
    unsigned int fourCC = *(unsigned int*)&(header[80]);
 
    unsigned char * buffer;
    unsigned int bufsize;
 
    bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize;
    buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char));
    fread(buffer, 1, bufsize, fp);
    fclose(fp);
 
    unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4;
    unsigned int format;
    switch (fourCC)
    {
    case FOURCC_DXT1:
        format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
        break;
    case FOURCC_DXT3:
        format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
        break;
    case FOURCC_DXT5:
        format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
        break;
    default:
        free(buffer);
        return 0;
    }
 
    //하나의 OpenGL 텍스처를 생성한다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다
    glBindTexture(GL_TEXTURE_2D, textureID);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 
    unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16;
    unsigned int offset = 0;
 
    //밉맵을 불러온다
    for (unsigned int level = 0; level < mipMapCount && (width || height); ++level)
    {
        unsigned int size = ((width + 3/ 4)*((height + 3/ 4)*blockSize;
        glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height,
            0size, buffer + offset);
 
        offset += size;
        width /= 2;
        height /= 2;
 
        //Non-Power-Of-Two 텍스처를 사용합니다.
        //이 코드는 혼란을 줄이기 위해 웹 페이지에는 포함되어 있지 않습니다.
        if (width < 1)width = 1;
        if (height < 1) height = 1;
    }
 
    free(buffer);
 
    return textureID;
}
 
bool loadOBJ(
    const char * path,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    printf("OBJ 파일 로딩중 %s...\n", path);
 
    std::vector<unsigned int> vertexIndices, uvIndices, normalIndices;
    std::vector<glm::vec3> temp_vertices;
    std::vector <glm::vec2> temp_uvs;
    std::vector<glm::vec3> temp_normals;
 
    FILE * file = fopen(path, "r");
    if (file == NULL) {
        printf("파일 경로를 확인하세요!\n");
        getchar();
        return false;
    }
 
    while (1) {
        
        char lineHeader[128];
 
        //첫번째 라인의 첫번째 단어를 읽는다
        int res = fscanf(file, "%s", lineHeader);
        if (res == EOF)
            break;
 
        //else : 라인의 헤더를 parse
        if (strcmp(lineHeader, "v"== 0) {
            glm::vec3 vertex;
            fscanf(file, "%f %f %f\n"&vertex.x, &vertex.y, &vertex.z);
            temp_vertices.push_back(vertex);
        }
        else if (strcmp(lineHeader, "vt"== 0) {
            glm::vec2 uv;
            fscanf(file, "%f %f\n"&uv.x, &uv.y);
            uv.y = -uv.y; //우리가 DDS texture만을 이용할 것이므로 V의 좌표를 반대로 바꾸어준다. 만약 TGA or BMP 로더를 사용하면 이 것을 제거해라.
            temp_uvs.push_back(uv);
        }
        else if (strcmp(lineHeader, "vn"== 0) {
            glm::vec3 normal;
            fscanf(file, "%f %f %f\n"&normal.x, &normal.y, &normal.z);
            temp_normals.push_back(normal);
        }
        else if (strcmp(lineHeader, "f"== 0) {
            std::string vertex1, vertex2, vertex3;
            unsigned int vertexIndex[3], uvIndex[3], normalIndex[3];
            int matches = fscanf(file,"%d/%d/%d %d/%d/%d %d/%d/%d\n"&vertexIndex[0], &uvIndex[0], &normalIndex[0], &vertexIndex[1], &uvIndex[1], &normalIndex[1], &vertexIndex[2], &uvIndex[2], &normalIndex[2]);
            if (matches != 9) {
                printf("파일을 읽을수없다.");
                return false;
            }
            vertexIndices.push_back(vertexIndex[0]);
            vertexIndices.push_back(vertexIndex[1]);
            vertexIndices.push_back(vertexIndex[2]);
            uvIndices.push_back(uvIndex[0]);
            uvIndices.push_back(uvIndex[1]);
            uvIndices.push_back(uvIndex[2]);
            normalIndices.push_back(normalIndex[0]);
            normalIndices.push_back(normalIndex[1]);
            normalIndices.push_back(normalIndex[2]);
        }
        else {
            //나머지 라인을 먹는다.
            char stupidBuffer[1000];
            fgets(stupidBuffer, 1000, file);
        }
    }
 
    //각 삼각형의 각 꼭지점
    for (unsigned int i = 0; i < vertexIndices.size(); i++) {
        
        //속성의 인덱스를 가져온다
        unsigned int vertexIndex = vertexIndices[i];
        unsigned int uvIndex = uvIndices[i];
        unsigned int normalIndex = normalIndices[i];
 
        //인덱스에서 속성을 가져온다
        glm::vec3 vertex = temp_vertices[vertexIndex - 1];
        glm::vec2 uv = temp_uvs[uvIndex - 1];
        glm::vec3 normal = temp_normals[normalIndex - 1];
 
        //버퍼에 속성을 넣는다
        out_vertices.push_back(vertex);
        out_uvs.push_back(uv);
        out_normals.push_back(normal);
 
    }
 
    return true;
 
}
 
void indexVBO(
    std::vector<glm::vec3> & in_vertices,
    std::vector<glm::vec2> & in_uvs,
    std::vector<glm::vec3> & in_normals,
 
    std::vector<unsigned short> & out_indices,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    std::map<PackedVertex, unsigned short> VertexToOutIndex;
 
    //각 input vertex를 위해
    for (unsigned int i = 0; i < in_vertices.size(); i++) {
        PackedVertex packed = { in_vertices[i], in_uvs[i], in_normals[i] };
 
        //out_XXXX에서 비슷한 vertex를 찾는다
        unsigned short index;
        bool found = getSimilarVertexIndex_fast(packed, VertexToOutIndex, index);
 
        if (found) { //비슷한 vertex가 VBO에 이미 있다면 대신 사용한다
            out_indices.push_back(index);
        }
        else {         //아니라면 이것은 아웃풋 데이터 추가가 필요하다
            out_vertices.push_back(in_vertices[i]);
            out_uvs.push_back(in_uvs[i]);
            out_normals.push_back(in_normals[i]);
            unsigned short newindex = (unsigned short)out_vertices.size() - 1;
            out_indices.push_back(newindex);
            VertexToOutIndex[packed] = newindex;
        }
 
    }
 
 
}
 
void computeMatricesFromInputs() {
 
    //glfwGetTime은 한번만 호출된다.
    static double lastTime = glfwGetTime();
 
    //현재와 마지막 프레임의 시간 차를 계산한다.
    double currentTime = glfwGetTime();
    float deltaTime = float(currentTime - lastTime);
 
    //마우스의 위치를 얻는다.
    double xpos, ypos;
    glfwGetCursorPos(window, &xpos, &ypos);
 
    //다음 프레임의 마우스 위치를 리셋한다.
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    horizontalAngle += mouseSpeed * float(1024 / 2 - xpos);
    verticalAngle += mouseSpeed * float(768 / 2 - ypos);
 
    //Direction : Spherical 좌표 to Cartesian 좌표 변환
    glm::vec3 direction(
        cos(verticalAngle)*sin(horizontalAngle),
        sin(verticalAngle),
        cos(verticalAngle)*cos(horizontalAngle)
    );
 
    //Right vector
    glm::vec3 right = glm::vec3(
        sin(horizontalAngle - 3.14f / 2.0f),
        0,
        cos(horizontalAngle - 3.14f / 2.0f)
    );
 
    //Up vector
    glm::vec3 up = glm::cross(right, direction);
 
    //앞으로 이동
    if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) {
        position += direction*deltaTime*speed;
    }
    //뒤로 이동
    if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) {
        position -= direction*deltaTime*speed;
    }
    //오른쪽로 Strafe
    if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) {
        position += right*deltaTime*speed;
    }
    //왼쪽으로 Strafe
    if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) {
        position -= right*deltaTime*speed;
    }
 
    float FoV = initialFoV;
 
    ProjectionMatrix = glm::perspective(FoV, 4.0f / 3.0f, 0.1f, 100.0f);
 
    ViewMatrix = glm::lookAt(
        position,                //camera here
        position + direction,        //and looks here
        up                        // Head is up
    );
 
    //다음 프레임을 위해
    lastTime = currentTime;
}
 
 
void initText2D(const char * texturePath) {
 
    //텍스쳐 초기화
    Text2DTextureID = loadDDS(texturePath);
 
    //VBO 초기화
    glGenBuffers(1&Text2DVertexBufferID);
    glGenBuffers(1&Text2DUVBufferID);
 
    //Shader 초기화
    Text2DShaderID = LoadShaders("TextVertexShader.vertexshader""TextVertexShader.fragmentshader");
 
    //uniforms' IDs 초기화
    Text2DUniformID = glGetUniformLocation(Text2DShaderID, "myTextureSampler");
 
}
void printText2D(const char * text, int x, int y, int size) {
 
    unsigned int length = strlen(text);
 
    //buffer 채우기
    std::vector<glm::vec2> vertices;
    std::vector<glm::vec2> UVs;
    for (unsigned int i = 0; i < length; i++) {
        glm::vec2 vertex_up_left = glm::vec2(x + i*size, y + size);
        glm::vec2 vertex_up_right = glm::vec2(x + i*size+size, y + size);
        glm::vec2 vertex_down_right = glm::vec2(x + i*size+size, y);
        glm::vec2 vertex_down_left = glm::vec2(x + i*size, y);
 
        vertices.push_back(vertex_up_left);
        vertices.push_back(vertex_down_left);
        vertices.push_back(vertex_up_right);
 
        vertices.push_back(vertex_down_right);
        vertices.push_back(vertex_up_right);
        vertices.push_back(vertex_down_left);
 
        char character = text[i];
        float uv_x = (character % 16/ 16.0f;
        float uv_y = (character / 16/ 16.0f;
 
        glm::vec2 uv_up_left = glm::vec2(uv_x, uv_y);
        glm::vec2 uv_up_right = glm::vec2(uv_x + 1.0f / 16.0f, uv_y);
        glm::vec2 uv_down_right = glm::vec2(uv_x+1.0f/16.0f, (uv_y+1.0f/16.0f));
        glm::vec2 uv_down_left = glm::vec2(uv_x, (uv_y+1.0f/16.0f));
        UVs.push_back(uv_up_left);
        UVs.push_back(uv_down_left);
        UVs.push_back(uv_up_right);
 
        UVs.push_back(uv_down_right);
        UVs.push_back(uv_up_right);
        UVs.push_back(uv_down_left);
 
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec2), &vertices[0], GL_STATIC_DRAW);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glBufferData(GL_ARRAY_BUFFER, UVs.size() * sizeof(glm::vec2), &UVs[0], GL_STATIC_DRAW);
 
        // Bind shader
        glUseProgram(Text2DShaderID);
 
        // Bind texture
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Text2DTextureID);
        // Set our "myTextureSampler" sampler to user Texture Unit 0
        glUniform1i(Text2DUniformID, 0);
 
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glVertexAttribPointer(02, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        // 2nd attribute buffer : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glVertexAttribPointer(12, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 
        // Draw call
        glDrawArrays(GL_TRIANGLES, 0, vertices.size());
 
        glDisable(GL_BLEND);
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
    }
 
}
void cleanupText2D() {
 
    // Delete buffers
    glDeleteBuffers(1&Text2DVertexBufferID);
    glDeleteBuffers(1&Text2DUVBufferID);
 
    // Delete texture
    glDeleteTextures(1&Text2DTextureID);
 
    // Delete shader
    glDeleteProgram(Text2DShaderID);
}
cs


'Game > Graphics' 카테고리의 다른 글

OpenGL-Tutorial 14 : Render To Texture  (0) 2018.07.01
OpenGL-Tutorial 13 : Normal Mapping  (0) 2018.06.29
OpenGL-Tutorial 11 : 2D Text  (0) 2018.06.28
OpenGL-Tutorial 10 : Transparency  (0) 2018.06.28
OpenGL-Tutorial 9 : VBO Indexing  (0) 2018.06.28