본문 바로가기

Game/Graphics

OpenGL-Tutorial 19 : Particles / Instancing

link : http://www.opengl-tutorial.org/kr/intermediate-tutorials/billboards-particles/particles-instancing/


Wow 마지막 튜토리얼이다. 꾸준히 달려온 나에게 칭찬을 보낸다.


하지만 튜토리얼을 진행해오면서 이해가 덜된 부분이 많기 때문에 복습을 다시 할 것이다.


복습 후에는 가볍게 게임을 하나 만들어봐야지! 화이팅!





Particles / Instancing


particle은 3D billboards와 매우 유사하다. 두 가지 차이점이 있다 :


1) 많은 것들이 합쳐져있고, 움직인다

2) 나타나고 죽고, 그들은 반투명하다


이 두 가지 차이는 모두 문제가 있다. 이 튜토리얼에서는 문제를 해결할 수 있는 방법을 제시한다.






Particles, lots of them !


많은 입자를 그리는 첫 번째 아이디어는 이전 튜토리얼의 코드를 사용하고, 


각 입자에 대해 glDrawArrays를 한 번 호출하는 것이다.


반짝이는 GTX의 512+ 멀티프로세서는 모두 하나의 쿼드를 그리기 위해 사용된다.

(분명히 하나만 사용되므로 99%의 효율 손실이 발생함)


그런 다음 두 번째 광고판을 그릴 것이다.


분명히, 우리는 동시에 모든 입자를 그리는 방법이 필요하다.


이를 수행할 수 있는 많은 방법이 있다. 여기에 세가지가 있다 :


1) 모든 입자가 들어있는 단일 VBO를 생성해라. 쉽고 효과적이며 모든 플랫폼에서 작동한다.

2) 기하학 쉐이더를 사용해라. 이 튜토리얼의 범위를 벗어나서 컴퓨터의 50%가 이 기능을 지원하지 않기 때문이다.

3) 인스턴싱을 사용해라. 모든 컴퓨터에서 사용할 수 있는 것은 아니지만, 대다수의 컴퓨터에서 가능하다.


이 튜토리얼에서는 퍼포먼스와 가용성의 균형이 잘 잡혀 있기 때문에 세 번째 옵션을 사용한다.


이 옵션을 사용하면 첫 번째 메소드에 대한 지원을 쉽게 추가할 수 있다.







Instancing


"instancing"은 우리가 기본 메시를 가지고 있지만, 이 쿼드에는 많은 인스턴스가 있다는 것이다.


기술적으로 이것은 여러 버퍼를 통해 수행된다 :


1) 그들 중 일부는 기본 메쉬를 설명한다.

2) 그 중 일부는 기본 메쉬의 각 인스턴스의 특수성을 설명한다.


각 버퍼에 넣을 항목에는 많은 옵션이 있다. 단순한 경우에 우리는 :


1) 메시의 꼭지점을 위한 하나의 버퍼. index 버퍼가 없으므로 이것은 2개의 삼각형을 만들어 1쿼드가 되는 6 vec3이다.

2) 입자 중심을 위한 하나의 버퍼.

3) particle의 색상을 위한 하나의 버퍼.


이들은 매우 표준적인 버퍼이다. 그들은 다음과 같은 방법으로 만들어진다.

// The VBO containing the 4 vertices of the particles.
// Thanks to instancing, they will be shared by all particles.
static const GLfloat g_vertex_buffer_data[] = {
 -0.5f, -0.5f, 0.0f,
 0.5f, -0.5f, 0.0f,
 -0.5f, 0.5f, 0.0f,
 0.5f, 0.5f, 0.0f,
};
GLuint billboard_vertex_buffer;
glGenBuffers(1, &billboard_vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);

// The VBO containing the positions and sizes of the particles
GLuint particles_position_buffer;
glGenBuffers(1, &particles_position_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
// Initialize with empty (NULL) buffer : it will be updated later, each frame.
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW);

// The VBO containing the colors of the particles
GLuint particles_color_buffer;
glGenBuffers(1, &particles_color_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
// Initialize with empty (NULL) buffer : it will be updated later, each frame.
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW);

, which is as usual. They are updated this way :

// Update the buffers that OpenGL uses for rendering.
// There are much more sophisticated means to stream data from the CPU to the GPU,
// but this is outside the scope of this tutorial.
// http://www.opengl.org/wiki/Buffer_Object_Streaming

glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLfloat) * 4, g_particule_position_size_data);

glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLubyte) * 4, g_particule_color_data);

, which is as usual. Before render, they are bound this way :

// 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer);
glVertexAttribPointer(
 0, // attribute. No particular reason for 0, but must match the layout in the shader.
 3, // size
 GL_FLOAT, // type
 GL_FALSE, // normalized?
 0, // stride
 (void*)0 // array buffer offset
);

// 2nd attribute buffer : positions of particles' centers
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glVertexAttribPointer(
 1, // attribute. No particular reason for 1, but must match the layout in the shader.
 4, // size : x + y + z + size => 4
 GL_FLOAT, // type
 GL_FALSE, // normalized?
 0, // stride
 (void*)0 // array buffer offset
);

// 3rd attribute buffer : particles' colors
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glVertexAttribPointer(
 2, // attribute. No particular reason for 1, but must match the layout in the shader.
 4, // size : r + g + b + a => 4
 GL_UNSIGNED_BYTE, // type
 GL_TRUE, // normalized? *** YES, this means that the unsigned char[4] will be accessible with a vec4 (floats) in the shader ***
 0, // stride
 (void*)0 // array buffer offset
);

 그것은 평소와 같고, 렌더링할 때 차이가 생긴다. glDrawArrays 대신 glDrawArrays를 N번 호출하는 것과 동일한

 glDrawArraysInstanced / glDrawElementsInstanced를 사용한다.

glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount);

 여기에는 무언가가 빠져있다. OpenGL에게 기본 메시용 버퍼와 다른 인스턴스용 버퍼를 말하지 않았다.

 이 작업은 glVertexAttribDivisor를 사용해 수행된다. 전체 주석 처리된 코드는 다음과 같다.

// These functions are specific to glDrawArrays*Instanced*.
// The first parameter is the attribute buffer we're talking about.
// The second parameter is the "rate at which generic vertex attributes advance when rendering multiple instances"
// http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribDivisor.xml
glVertexAttribDivisor(0, 0); // particles vertices : always reuse the same 4 vertices -> 0
glVertexAttribDivisor(1, 1); // positions : one per quad (its center) -> 1
glVertexAttribDivisor(2, 1); // color : one per quad -> 1

// Draw the particules !
// This draws many times a small triangle_strip (which looks like a quad).
// This is equivalent to :
// for(i in ParticlesCount) : glDrawArrays(GL_TRIANGLE_STRIP, 0, 4),
// but faster.
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount);

AttribDivisor로 정수를 전달할 수 있으므로 인스턴스화는 매우 다양하다.

예를 들어, glVertexAttribDivisor (2,10)를 사용하면 10개의 후속 인스턴스가 같은 색상을 갖게 된다.





What's the point ?


요점은 이제 우리는 거대한 메시가 아닌 각 프레임(the center of particles)의 작은ㅇ 버퍼를 업데이트해야한다는 것이다.


이것은 x4 대역폭 이득이다.



Life and death


장면의 대부분 다른 물체와는 달리, particle은 매우 높은 속도로 죽고 태어난다. 우리는 새로운 particle을 얻고 버리는


아주 빠른 방법이 필요하다. 이것은 "new Particle()"보다 낫다.






Creating new particles


For this, we will have a big particles container :

// CPU representation of a particle
struct Particle{
	glm::vec3 pos, speed;
	unsigned char r,g,b,a; // Color
	float size, angle, weight;
	float life; // Remaining life of the particle. if < 0 : dead and unused.

};

const int MaxParticles = 100000;
Particle ParticlesContainer[MaxParticles];

 이제 우리는 새로운 것을 창조할 방법이 필요하다. 이 함수는 ParticlesContainer에서 선형으로 검색한다.

 마지막 알려진 위치에서 시작한다는 점만 제외하면 끔찍한 생각이다. 따라서 이 함수는 일반적으로 즉시 반환된다.

int LastUsedParticle = 0;

// Finds a Particle in ParticlesContainer which isn't used yet.
// (i.e. life < 0);
int FindUnusedParticle(){

    for(int i=LastUsedParticle; i<MaxParticles; i++){
        if (ParticlesContainer[i].life < 0){
            LastUsedParticle = i;
            return i;
        }
    }

    for(int i=0; i<LastUsedParticle; i++){
        if (ParticlesContainer[i].life < 0){
            LastUsedParticle = i;
            return i;
        }
    }

    return 0; // All particles are taken, override the first one
}

 "life", "color", "speed" 및 "position" 값을 ParticlesContainer [particleIndex]에 채울 수 있습니다. 자세한 내용은 코드를 참조해라.

 그러나 여기에서는 거의 모든 것을 할 수 있습니다. 유일한 재미있는 점은 각 프레임을 생성하기 위해 얼마나 많은 입자가

 있어야 하는가이다. 이것은 대개 응용 프로그램에 따라 다르기 때문에 초당 10000개의 새 입자를 가정해보자.

int newparticles = (int)(deltaTime*10000.0);

except that you should probably clamp this to a fixed number :

// Generate 10 new particule each millisecond,
// but limit this to 16 ms (60 fps), or if you have 1 long frame (1sec),
// newparticles will be huge and the next frame even longer.
int newparticles = (int)(deltaTime*10000.0);
if (newparticles > (int)(0.016f*10000.0))
    newparticles = (int)(0.016f*10000.0);





The main simulation loop


ParticlesContainer에는 활성 particle과 "dead" particle 모두 들어있지만, GPU로 보내는 버퍼에는 살아있는 입자만 있어야한다.


따라서 우리는 각 입자에 대해 반복해 그것이 살아있는지, 죽어있는지, 모든 것이 올바르면 중력을 추가하고 마지막으로


GPU 전용 버퍼에 복사한다.

// Simulate all particles
int ParticlesCount = 0;
for(int i=0; i<MaxParticles; i++){

    Particle& p = ParticlesContainer[i]; // shortcut

    if(p.life > 0.0f){

        // Decrease life
        p.life -= delta;
        if (p.life > 0.0f){

            // Simulate simple physics : gravity only, no collisions
            p.speed += glm::vec3(0.0f,-9.81f, 0.0f) * (float)delta * 0.5f;
            p.pos += p.speed * (float)delta;
            p.cameradistance = glm::length2( p.pos - CameraPosition );
            //ParticlesContainer[i].pos += glm::vec3(0.0f,10.0f, 0.0f) * (float)delta;

            // Fill the GPU buffer
            g_particule_position_size_data[4*ParticlesCount+0] = p.pos.x;
            g_particule_position_size_data[4*ParticlesCount+1] = p.pos.y;
            g_particule_position_size_data[4*ParticlesCount+2] = p.pos.z;

            g_particule_position_size_data[4*ParticlesCount+3] = p.size;

            g_particule_color_data[4*ParticlesCount+0] = p.r;
            g_particule_color_data[4*ParticlesCount+1] = p.g;
            g_particule_color_data[4*ParticlesCount+2] = p.b;
            g_particule_color_data[4*ParticlesCount+3] = p.a;

        }else{
            // Particles that just died will be put at the end of the buffer in SortParticles();
            p.cameradistance = -1.0f;
        }

        ParticlesCount++;

    }
}

이것이 얻은 것이다. 하지만 문제가 있다.







Sorting


튜토리얼 10에서 설명했듯이 블렌딩이 올바르도록 반투명 개겣를 뒤에서 앞으로 정렬해야한다.

void SortParticles(){
    std::sort(&ParticlesContainer[0], &ParticlesContainer[MaxParticles]);
}

 이제는 std::sort에는 컨테이너에 있는 다른 입자 앞이라 뒤에 입자가 있어야하는지 여부를 알 수 있는 함수가 필요하다.

 이것은 Particle::operator<:로 할 수 있다.


// CPU representation of a particle
struct Particle{

    ...

    bool operator<(Particle& that){
        // Sort in reverse order : far particles drawn first.
        return this->cameradistance > that.cameradistance;
    }
};

 그러면 ParticleContainer가 정렬되고 파티클이 올바르게 표시된다.







Going further


Animated particles


텍스처 아트라스로 입자의 텍스처에 애니메이션을 적용할 수 있다. 각 파티클의 age와 position을 함께 보내고,


쉐이더에서 2D font 튜토리얼과 같이 UV를 계산한다. 텍스처 atlas는 다음과 같이 보인다.







Handling several particle systems


둘 이상의 파티클 시스템이 필요한 경우 두 가지 옵션이 있다. 하나의 ParticleContainer를 사용하거나 시스템 당 하나를 사용한다.


모든 particle에 대해 하나의 컨테이너가 있다면 완벽하게 정렬할 수 있다. 가장 큰 단점은 모든 입자에 대해 동일한 질감을


사용해야한다는 점이다. 이는 큰 문제이다. 이것은 texture atlas를 사용해 해결할 수 있지만, 편집하고 사용하는 것은 쉽지 않다.


반면에 particle system당 하나의 컨테이너가 있는 경우 particle은 이 컨테이너 내부에서만 정렬된다.


두 개의 입자 시스템이 겹치면 인공물이 나타난다. 응용 프로그램에 따라 문제가 되지 않을 수도 있다.


물론, (작고 다루기 쉬운) atlas가 있는 여러가지 입자 시스템이 있는 일종의 하이브리드 시스템을 사용할수도 있다.







Smooth particles


조만간 common artifact를 볼 수 있을 것이다 : particle이 일부 geometry와 교차할 때 한계가 매우 눈에 띄고 추악해 질 것이다.



이것을 해결하는 일반적인 기법은 현재 그려진 조각이 Z-Buffer 근처에 있는지 테스트하는 것이다.


만약 그렇다면 조각이 사라진다.


그러나 "normal" Z-Buffer로는 불가능한 Z-Buffer를 샘플링해야한다. 렌더링 대상에서 장면을 렌더링해야한다.


또는, glBlitFramebuffer를 사용해 Z 버퍼를 한 프레임 버퍼에서 다른 버퍼로 복사할 수 있다.






Improving fillrate


현대 GPU에서 가장 제한적인 요소 중 하나는 채우기 속도이다 : 16.6ms에 쓸 수 있는 조각(pixel)의 양은 60FPS를 얻을 수 있다.


이것은 문제이다. 왜냐하면 입자가 일반적으로 많은 양의 채우기를 필요로 하기 때문이다.


매번 다른 입자로 동일한 조각을 10번 다시 그릴 수 있기 때문이다. 당신이 그렇게 하지 않으면 인공물을 얻게될 수도 있다.


쓰여진 모든 fragments 중에서 많은 것은 쓸모가 없다 : 


1) 이것들은 국경(border)에 있다.

2) particle texture는 종종 가장자리에서 완전히 투명하지만 입자의 메시가 여전히 그릴 것이며,

3) 이전과 완전히 같은 값으로 색상 버퍼를 업데이트한다.


이 작은 유틸리티는 텍스처에 꼭 맞는 메시(glDrawArraysInstanced()로 그릴 메시)를 계산한다.





후... 다했다! particle이 생각보다 매우 예쁘게 나왔다. 유니티에서는 공부할 때 실험만 해보고 실제 게임에는 써보지 않았었는데


이렇게 직접 코딩으로 만들어보니 신기하고, 더 예뻐보였다.




1) Particle.fragmentshader


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#version 330 core
 
// 정점 쉐이더로부터 보간된 값
in vec2 UV;
in vec4 particlecolor;
 
// Ouput data
out vec4 color;
 
uniform sampler2D myTextureSampler;
 
void main(){
    // Output color = color of the texture at the specified UV
    color = texture( myTextureSampler, UV ) * particlecolor;
}
cs


2) Particle.vertexshader


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#version 330 core
 
// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 squareVertices;
layout(location = 1) in vec4 xyzs; // Position of the center of the particule and size of the square
layout(location = 2) in vec4 color; // Position of the center of the particule and size of the square
 
// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec4 particlecolor;
 
// Values that stay constant for the whole mesh.
uniform vec3 CameraRight_worldspace;
uniform vec3 CameraUp_worldspace;
uniform mat4 VP; // Model-View-Projection matrix, but without the Model (the position is in BillboardPos; the orientation depends on the camera)
 
void main()
{
    float particleSize = xyzs.w; // because we encoded it this way.
    vec3 particleCenter_wordspace = xyzs.xyz;
    
    vec3 vertexPosition_worldspace = 
        particleCenter_wordspace
        + CameraRight_worldspace * squareVertices.x * particleSize
        + CameraUp_worldspace * squareVertices.y * particleSize;
 
    // Output position of the vertex
    gl_Position = VP * vec4(vertexPosition_worldspace, 1.0f);
 
    // UV of the vertex. No special space for this one.
    UV = squareVertices.xy + vec2(0.5, 0.5);
    particlecolor = color;
}
 
 
cs


3) source.cpp


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <algorithm>
#include <map>
#include <GL/glew.h>
#include <glfw3.h>
#include <GL/glew.h>
GLFWwindow* window;
 
//로테이션
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <glm/gtx/norm.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <glm/gtx/norm.hpp>
 
#include <AntTweakBar.h>
 
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
using namespace glm;
 
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
 
#define DRAW_CUBE
 
GLuint LoadShaders(const char *const char *);
GLuint loadBMP_custom(const char *);
GLuint loadDDS(const char *);
bool loadOBJ(
    const char *,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &);
 
void indexVBO(
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
 
    std::vector<unsigned short> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &
);
void indexVBO_TBN(
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
 
    std::vector<unsigned short> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &
);
 
 
//mouse-keyboard input
void computeMatricesFromInputs();
glm::mat4 getViewMatrix();
glm::mat4 getProjectionMatrix();
 
glm::mat4 ViewMatrix;
glm::mat4 ProjectionMatrix;
 
glm::mat4 getViewMatrix() {
    return ViewMatrix;
}
glm::mat4 getProjectionMatrix() {
    return ProjectionMatrix;
}
 
struct PackedVertex {
    glm::vec3 position;
    glm::vec2 uv;
    glm::vec3 normal;
    bool operator<(const PackedVertex that) const {
        return memcmp((void*)this, (void*)&that, sizeof(PackedVertex)) > 0;
    };
};
 
bool is_near(float v1, float v2) {
    return fabs(v1 - v2) < 0.01f;
}
 
bool getSimilarVertexIndex_fast(
    PackedVertex & packed,
    std::map<PackedVertex, unsigned short> & VertexToOutIndex,
    unsigned short & result
) {
    std::map<PackedVertex, unsigned short>::iterator it = VertexToOutIndex.find(packed);
    if (it == VertexToOutIndex.end()) {
        return false;
    }
    else {
        result = it->second;
        return true;
    }
}
 
bool getSimilarVertexIndex(
    glm::vec3 & in_vertex,
    glm::vec2 & in_uv,
    glm::vec3 & in_normal,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals,
    unsigned short & result
) {
    // Lame linear search
    for (unsigned int i = 0; i < out_vertices.size(); i++) {
        if (
            is_near(in_vertex.x, out_vertices[i].x) &&
            is_near(in_vertex.y, out_vertices[i].y) &&
            is_near(in_vertex.z, out_vertices[i].z) &&
            is_near(in_uv.x, out_uvs[i].x) &&
            is_near(in_uv.y, out_uvs[i].y) &&
            is_near(in_normal.x, out_normals[i].x) &&
            is_near(in_normal.y, out_normals[i].y) &&
            is_near(in_normal.z, out_normals[i].z)
            ) {
            result = i;
            return true;
        }
    }
    // No other vertex could be used instead.
    // Looks like we'll have to add it to the VBO.
    return false;
}
 
 
void computeTangentBasis(
    //inputs
    std::vector<glm::vec3> &,
    std::vector<glm::vec2> &,
    std::vector<glm::vec3> &,
    //outputs
    std::vector<glm::vec3> &,
    std::vector<glm::vec3> &
);
 
//text2D
unsigned int Text2DTextureID;
unsigned int Text2DVertexBufferID;
unsigned int Text2DUVBufferID;
unsigned int Text2DShaderID;
unsigned int Text2DUniformID;
 
void initText2D(const char *);
void printText2D(const char *intintint);
void cleanupText2D();
 
 
//포지션 초기화
glm::vec3 position = glm::vec3(005);
float horizontalAngle = 3.14f;
float verticalAngle = 0.0f;
float initialFoV = 45.0f;
 
float speed = 3.0f;
float mouseSpeed = 0.005f;
 
void APIENTRY DebugOutputCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam) {
 
    printf("OpenGL Debug Output message : ");
 
    if (source == GL_DEBUG_SOURCE_API_ARB) printf("Source : API; ");
    else if (source == GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB)    printf("Source : WINDOW_SYSTEM; ");
    else if (source == GL_DEBUG_SOURCE_SHADER_COMPILER_ARB)    printf("Source : SHADER_COMPILER; ");
    else if (source == GL_DEBUG_SOURCE_THIRD_PARTY_ARB)        printf("Source : THIRD_PARTY; ");
    else if (source == GL_DEBUG_SOURCE_APPLICATION_ARB)        printf("Source : APPLICATION; ");
    else if (source == GL_DEBUG_SOURCE_OTHER_ARB)            printf("Source : OTHER; ");
 
    if (type == GL_DEBUG_TYPE_ERROR_ARB)                        printf("Type : ERROR; ");
    else if (type == GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB)    printf("Type : DEPRECATED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB)    printf("Type : UNDEFINED_BEHAVIOR; ");
    else if (type == GL_DEBUG_TYPE_PORTABILITY_ARB)            printf("Type : PORTABILITY; ");
    else if (type == GL_DEBUG_TYPE_PERFORMANCE_ARB)            printf("Type : PERFORMANCE; ");
    else if (type == GL_DEBUG_TYPE_OTHER_ARB)                printf("Type : OTHER; ");
 
    if (severity == GL_DEBUG_SEVERITY_HIGH_ARB)                printf("Severity : HIGH; ");
    else if (severity == GL_DEBUG_SEVERITY_MEDIUM_ARB)        printf("Severity : MEDIUM; ");
    else if (severity == GL_DEBUG_SEVERITY_LOW_ARB)            printf("Severity : LOW; ");
 
    //break point를 여기에 설정해라, 당신의 디버거는 프로그램을 멈출 것이다
    //callstack은 바로 너에게 offending call을 보여줄 것이다
    printf("Mesage : %s\n", message);
}
 
//로테이션
vec3 gPosition1(-1.5f, 0.0f, 0.0f);
vec3 gOrientation1;
 
vec3 gPosition2(1.5f, 0.05f, 0.0f);
quat gOrientation2;
 
bool gLookAtOther = true;
 
//quaternion such that q*start = dest 리턴
quat RotationBetweenVectors(vec3, vec3);
 
//"direction"을 바라보는 개체를 만드는 쿼터니언을 반환한다.
//RotationBetweenVectors와 유사하지만 수직 방향을 제어한다.
//이것은 정지 상태에서 객체가 +Z를 향하고 있다고 가정한다.
//첫번째 매개 변수는 목표 지점이 아닌 방향이다.
quat LookAt(vec3, vec3);
 
//SLERP와 비슷하지만 maxAngle보다 큰 회전을 금지한다 (라디안 단위).
//LookAt과 함께 문자를 만들 수 있다.
quat RotateTowards(quat, quat, float);
 
 
 
//Particle 코드
struct Particle {
    glm::vec3 pos, speed;
    unsigned char r, g, b, a;
    float size, angle, weight;
    float life;                //if < 0 : dead and unused
    float cameradistance;    //if dead : -1.0f
 
    bool operator<(const Particle& that) const {
        return this->cameradistance > that.cameradistance;
    }
};
 
const int MaxParticles = 100000;
Particle ParticlesContainer[MaxParticles];
int LastUsedParticle = 0;
 
// ParticlesContainer에 있는 아직 사용되지 않은 Particle을 찾는다
// (i.e. life < 0);
int FindUnusedParticle() {
    for (int i = LastUsedParticle; i < MaxParticles; i++) {
        if (ParticlesContainer[i].life < 0) {
            LastUsedParticle = i;
            return i;
        }
    }
 
    for (int i = 0; i < LastUsedParticle; i++) {
        if (ParticlesContainer[i].life < 0) {
            LastUsedParticle = i;
            return i;
        }
    }
 
    return 0// 모든 파티클이 사용됐다, 첫번째를 override한다.
}
 
void SortParticles() {
    std::sort(&ParticlesContainer[0], &ParticlesContainer[MaxParticles]);
}
 
int main() {
 
    // Initialise GLFW
    if (!glfwInit())
    {
        fprintf(stderr, "Failed to initialize GLFW\n");
        getchar();
        return -1;
    }
 
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
 
    // Open a window and create its OpenGL context
    window = glfwCreateWindow(1024768"QBOT_opengl"NULLNULL);
    if (window == NULL) {
        fprintf(stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n");
        getchar();
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
 
    // Initialize GLEW
    glewExperimental = true;
    if (glewInit() != GLEW_OK) {
        fprintf(stderr, "Failed to initialize GLEW\n");
        getchar();
        glfwTerminate();
        return -1;
    }
 
    glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
 
    // Set the mouse at the center of the screen
    glfwPollEvents();
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    // Dark blue background
    glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
 
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
 
    GLuint VertexArrayID;
    glGenVertexArrays(1&VertexArrayID);
    glBindVertexArray(VertexArrayID);
 
    GLuint programID = LoadShaders("Particle.vertexshader""Particle.fragmentshader");
 
    GLuint CameraRight_worldspace_ID = glGetUniformLocation(programID, "CameraRight_worldspace");
    GLuint CameraUp_worldspace_ID = glGetUniformLocation(programID, "CameraUp_worldspace");
    GLuint ViewProjMatrixID = glGetUniformLocation(programID, "VP");
 
    GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
 
    static GLfloat* g_particule_position_size_data = new GLfloat[MaxParticles * 4];
    static GLubyte* g_particule_color_data = new GLubyte[MaxParticles * 4];
 
    for (int i = 0; i < MaxParticles; i++) {
        ParticlesContainer[i].life = -1.0f;
        ParticlesContainer[i].cameradistance = -1.0f;
    }
 
    GLuint Texture = loadDDS("particle.DDS");
 
    // 파티클의 4 정점을 포함하는 VBO
    static const GLfloat g_vertex_buffer_data[] = {
        -0.5f, -0.5f, 0.0f,
         0.5f, -0.5f, 0.0f,
        -0.5f,  0.5f, 0.0f,
         0.5f,  0.5f, 0.0f,
    };
    GLuint billboard_vertex_buffer;
    glGenBuffers(1&billboard_vertex_buffer);
    glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer);
    glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_DYNAMIC_DRAW);
 
    // The VBO containing the positions and sizes of the particles
    GLuint particles_position_buffer;
    glGenBuffers(1&particles_position_buffer);
    glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
    // Initialize with empty (NULL) buffer : it will be updated later, each frame.
    glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW);
 
    // The VBO containing the colors of the particles
    GLuint particles_color_buffer;
    glGenBuffers(1&particles_color_buffer);
    glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
    // Initialize with empty (NULL) buffer : it will be updated later, each frame.
    glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW);
    
 
    double lastTime = glfwGetTime();
    do {
        //Clear the Screen
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 
        double currentTime = glfwGetTime();
        double deltaTime = currentTime - lastTime;
        lastTime = currentTime;
 
        computeMatricesFromInputs();
        glm::mat4 ProjectionMatrix = getProjectionMatrix();
        glm::mat4 ViewMatrix = getViewMatrix();
 
        //입자를 정렬하려면 카메라의 위치가 필요하다
        //카메라의 거리 w.r.t
        glm::vec3 CameraPosition(glm::inverse(ViewMatrix)[3]);
        glm::mat4 ViewProjectionMatrix = ProjectionMatrix * ViewMatrix;
 
        // 밀리 세컨드당 10개의 새로운 파티클 생성
        // 16ms (60fps)로 제한하거나 1개의 긴 프레임이 있는경우
        // new particle은 거대하고 다음 프레임은 더 길어진다
        int newparticles = (int)(deltaTime*10000.0);
        if (newparticles > (int)(0.016f*10000.0))
            newparticles = (int)(0.016f*10000.0);
 
        for (int i = 0; i < newparticles; i++) {
            int particleIndex = FindUnusedParticle();
            ParticlesContainer[particleIndex].life = 5.0f;
            ParticlesContainer[particleIndex].pos = glm::vec3(00-20.0f);
 
            float spread = 1.5f;
            glm::vec3 maindir = glm::vec3(0.0f, 10.0f, 0.0f);
            glm::vec3 randomdir = glm::vec3(
                (rand() % 2000 - 1000.0f) / 1000.0f,
                (rand() % 2000 - 1000.0f) / 1000.0f,
                (rand() % 2000 - 1000.0f) / 1000.0f
            );
 
            ParticlesContainer[particleIndex].speed = maindir + randomdir*spread;
 
            // 랜덤 컬러를 생성하는 매우 좋지 않은 방법
            ParticlesContainer[particleIndex].r = rand() % 256;
            ParticlesContainer[particleIndex].g = rand() % 256;
            ParticlesContainer[particleIndex].b = rand() % 256;
            ParticlesContainer[particleIndex].a = (rand() % 256/ 3;
 
            ParticlesContainer[particleIndex].size = (rand() % 1000/ 2000.0f + 0.1f;
        };
 
        // 모든 particle 시뮬레이트
        int ParticlesCount = 0;
        for (int i = 0; i < MaxParticles; i++) {
 
            Particle& p = ParticlesContainer[i];
 
            if (p.life > 0.0f) {
 
                // life를 줄인다
                p.life -= deltaTime;
                if (p.life > 0.0f) {
 
                    // 간단한 물리를 시뮬레이트 : 충돌x, 오로지 중력만!
                    p.speed += glm::vec3(0.0f, -9.81f, 0.0f) * (float)deltaTime * 0.5f;
                    p.pos += p.speed * (float)deltaTime;
                    p.cameradistance = glm::length2(p.pos - CameraPosition);
 
                    // GPU buffer를 채운다
                    g_particule_position_size_data[4 * ParticlesCount + 0= p.pos.x;
                    g_particule_position_size_data[4 * ParticlesCount + 1= p.pos.y;
                    g_particule_position_size_data[4 * ParticlesCount + 2= p.pos.z;
 
                    g_particule_position_size_data[4 * ParticlesCount + 3= p.size;
 
                    g_particule_color_data[4 * ParticlesCount + 0= p.r;
                    g_particule_color_data[4 * ParticlesCount + 1= p.g;
                    g_particule_color_data[4 * ParticlesCount + 2= p.b;
                    g_particule_color_data[4 * ParticlesCount + 3= p.a;
                }
                else {
                    // 곧 죽을 particle들은 SortParticles()의 마지막 버퍼에 넣어진다.
                    p.cameradistance = -1.0f;
                }
 
                ParticlesCount++;
 
            }
 
        }
 
        SortParticles();
 
        glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
        glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
        glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLfloat) * 4, g_particule_position_size_data);
 
        glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
        glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
        glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLubyte) * 4, g_particule_color_data);
        
 
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 
        glUseProgram(programID);
 
        // Bind our texture in Texture Unit 0
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Texture);
        // Set our "myTextureSampler" sampler to user Texture Unit 0
        glUniform1i(TextureID, 0);
 
        // 튜토리얼의 흥미로운 부분이다.
        // 이것은 inverse (ViewMatrix)에 의한 mlutiplying (1,0,0)과 (0,1,0)과 같습니다.
        // ViewMatrix는 직각 (이 방법으로 만들었습니다)입니다.
        // 그래서 그것의 역함수 역시 그것의 전치이고,
        // 행렬을 조 변경하는 것이 "자유"입니다 (반전은 느림)
        glUniform3f(CameraRight_worldspace_ID, ViewMatrix[0][0], ViewMatrix[1][0], ViewMatrix[2][0]);
        glUniform3f(CameraUp_worldspace_ID, ViewMatrix[0][1], ViewMatrix[1][1], ViewMatrix[2][1]);
 
        glUniformMatrix4fv(ViewProjMatrixID, 1, GL_FALSE, &ViewProjectionMatrix[0][0]);
 
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, billboard_vertex_buffer);
        glVertexAttribPointer(
            0,                  // attribute. No particular reason for 0, but must match the layout in the shader.
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
        );
 
        // 2nd attribute buffer : positions of particles' centers
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
        glVertexAttribPointer(
            1,                                // attribute. No particular reason for 1, but must match the layout in the shader.
            4,                                // size : x + y + z + size => 4
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
        );
 
        // 3rd attribute buffer : particles' colors
        glEnableVertexAttribArray(2);
        glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
        glVertexAttribPointer(
            2,                                // attribute. No particular reason for 1, but must match the layout in the shader.
            4,                                // size : r + g + b + a => 4
            GL_UNSIGNED_BYTE,                 // type
            GL_TRUE,                          // normalized?    *** YES, this means that the unsigned char[4] will be accessible with a vec4 (floats) in the shader ***
            0,                                // stride
            (void*)0                          // array buffer offset
        );
 
        glVertexAttribDivisor(00); // particles vertices : always reuse the same 4 vertices -> 0
        glVertexAttribDivisor(11); // positions : one per quad (its center)                 -> 1
        glVertexAttribDivisor(21); // color : one per quad                                  -> 1
 
        glDrawArraysInstanced(GL_TRIANGLE_STRIP, 04, ParticlesCount);
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
        glDisableVertexAttribArray(2);
 
        glfwSwapBuffers(window);
        glfwPollEvents();
 
    } // Check if the ESC key was pressed or the window was closed
    while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS &&
        glfwWindowShouldClose(window) == 0);
 
    delete[] g_particule_position_size_data;
 
 
    // Cleanup VBO and shader
    glDeleteBuffers(1&particles_color_buffer);
    glDeleteBuffers(1&particles_position_buffer);
    glDeleteBuffers(1&billboard_vertex_buffer);
    glDeleteProgram(programID);
    glDeleteTextures(1&TextureID);
    glDeleteVertexArrays(1&VertexArrayID);
 
    // Close OpenGL window and terminate GLFW
    glfwTerminate();
 
    return 0;
}
 
GLuint LoadShaders(const char * vertex_file_path, const char * fragment_file_path) {
 
    //쉐이더 생성
    GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER);
    GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);
 
    //버텍스 쉐이더 코드를 파일에서 읽기
    std::string VertexShaderCode;
    std::ifstream VertexShaderStream(vertex_file_path, std::ios::in);
    if (VertexShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << VertexShaderStream.rdbuf();
        VertexShaderCode = sstr.str();
        VertexShaderStream.close();
    }
    else {
        printf("파일 %s를 읽을 수 없음. 정확한 디렉토리를 사용 중입니까?\n", vertex_file_path);
        getchar();
        return 0;
    }
 
    //프래그먼트 쉐이더 코드를 파일에서 읽기
    std::string FragmentShaderCode;
    std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in);
    if (FragmentShaderStream.is_open()) {
        std::stringstream sstr;
        sstr << FragmentShaderStream.rdbuf();
        FragmentShaderCode = sstr.str();
        FragmentShaderStream.close();
    }
 
    GLint Result = GL_FALSE;
    int InfoLogLength;
 
    //버텍스 쉐이더를 컴파일
    printf("Compiling shader : %s\n", vertex_file_path);
    char const * VertexSourcePointer = VertexShaderCode.c_str();
    glShaderSource(VertexShaderID, 1&VertexSourcePointer, NULL);
    glCompileShader(VertexShaderID);
 
    //버텍스 쉐이더를 검사
    glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> VertexShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL&VertexShaderErrorMessage[0]);
        printf("%s\n"&VertexShaderErrorMessage[0]);
    }
 
    //프래그먼트 쉐이더를 컴파일
    printf("Compiling shader : %s", fragment_file_path);
    char const * FragmentSourcePointer = FragmentShaderCode.c_str();
    glShaderSource(FragmentShaderID, 1&FragmentSourcePointer, NULL);
    glCompileShader(FragmentShaderID);
 
    //프래그먼트 쉐이더를 검사
    glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result);
    glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> FragmentShaderErrorMessage(InfoLogLength + 1);
        glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL&FragmentShaderErrorMessage[0]);
        printf("%s\n"&FragmentShaderErrorMessage[0]);
    }
 
    //프로그램에 링크
    printf("Linking program\n");
    GLuint ProgramID = glCreateProgram();
    glAttachShader(ProgramID, VertexShaderID);
    glAttachShader(ProgramID, FragmentShaderID);
    glLinkProgram(ProgramID);
 
    //프로그램 검사
    glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
    glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
    if (InfoLogLength > 0) {
        std::vector<char> ProgramErrorMessage(InfoLogLength + 1);
        glGetProgramInfoLog(ProgramID, InfoLogLength, NULL&ProgramErrorMessage[0]);
        printf("%s\n"&ProgramErrorMessage[0]);
    }
 
    glDetachShader(ProgramID, VertexShaderID);
    glDetachShader(ProgramID, FragmentShaderID);
 
    glDeleteShader(VertexShaderID);
    glDeleteShader(FragmentShaderID);
 
    return ProgramID;
}
 
GLuint loadBMP_custom(const char * imagepath) {
 
    printf("Reading image %s\n", imagepath);
 
    //BMP파일의 헤더에서 데이터를 읽는다
    unsigned char header[54];
    unsigned int dataPos;
    unsigned int imageSize;
    unsigned int width, height;
    //실제 RGB 데이터
    unsigned char * data;
 
    //파일을 연다
    FILE * file = fopen(imagepath, "rb");
    if (!file) {
        printf("%s는 열수 없다. 경로가 맞는지 확인해라.\n", imagepath);
        getchar();
        return 0;
    }
 
    //헤더를 읽는다, i.e. the 54 first bytes
 
    //만약 54 bytes보다 적게 읽혔으면 문제 발생
    if (fread(header, 154, file) != 54) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //A BMP 파일은 항상 "BM"으로 시작한다.
    if (header[0!= 'B' || header[1!= 'M') {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
    //24pp file임을 확인한다.
    if (*(int*)&(header[0x1e]) != 0 || *(int*)&(header[0x1C]) != 24) {
        printf("BMP 파일이 아니다\n");
        return 0;
    }
 
    //이미지에 대한 정보를 읽는다.
    dataPos = *(int*)&(header[0x0A]);
    imageSize = *(int*)&(header[0x22]);
    width = *(int*)&(header[0x12]);
    height = *(int*)&(header[0x16]);
 
    //몇몇 BMP 파일들은 포맷이 놓쳐졌다, 놓쳐진 정보를 추측해라
    if (imageSize == 0) imageSize = width*height * 3// 3 : one byte for each Red-Green-Blue component
    if (dataPos == 0) dataPos = 54//BMP 헤더는 항상 이 형식
 
    //버퍼를 생성한다
    data = new unsigned char[imageSize];
 
    //파일의 버퍼에 있는 실제 데이터를 읽는다
    fread(data, 1, imageSize, file);
 
    //모든 것은 현재 메모리에 있다, 파일을 닫는다
    fclose(file);
 
    //openGL 텍스처를 만든다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다.
    glBindTexture(GL_TEXTURE_2D, textureID);
 
    //이미지를 OpenGL에게 넘긴다
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data);
 
    delete[] data;
 
    // trilinear(삼선형) 필터링
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glGenerateMipmap(GL_TEXTURE_2D);
 
    return textureID;
}
 
GLuint loadDDS(const char * imagepath) {
 
    unsigned char header[124];
 
    FILE *fp;
 
    //파일을 연다
    fp = fopen(imagepath, "rb");
    if (fp == NULL) {
        printf("%s는 열 수 없다. 경로를 확인해라\n", imagepath);
        getchar();
        return 0;
    }
 
    //파일의 타입을 확인한다
    char filecode[4];
    fread(filecode, 14, fp);
    if (strncmp(filecode, "DDS "4!= 0) {
        fclose(fp);
        return 0;
    }
 
    //surface desc를 얻는다
    fread(&header, 1241, fp);
 
    unsigned int height = *(unsigned int*)&(header[8]);
    unsigned int width = *(unsigned int*)&(header[12]);
    unsigned int linearSize = *(unsigned int*)&(header[16]);
    unsigned int mipMapCount = *(unsigned int*)&(header[24]);
    unsigned int fourCC = *(unsigned int*)&(header[80]);
 
    unsigned char * buffer;
    unsigned int bufsize;
 
    bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize;
    buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char));
    fread(buffer, 1, bufsize, fp);
    fclose(fp);
 
    unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4;
    unsigned int format;
    switch (fourCC)
    {
    case FOURCC_DXT1:
        format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
        break;
    case FOURCC_DXT3:
        format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
        break;
    case FOURCC_DXT5:
        format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
        break;
    default:
        free(buffer);
        return 0;
    }
 
    //하나의 OpenGL 텍스처를 생성한다
    GLuint textureID;
    glGenTextures(1&textureID);
 
    //새로이 만들어진 텍스처를 바인딩한다
    glBindTexture(GL_TEXTURE_2D, textureID);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 
    unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16;
    unsigned int offset = 0;
 
    //밉맵을 불러온다
    for (unsigned int level = 0; level < mipMapCount && (width || height); ++level)
    {
        unsigned int size = ((width + 3/ 4)*((height + 3/ 4)*blockSize;
        glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height,
            0size, buffer + offset);
 
        offset += size;
        width /= 2;
        height /= 2;
 
        //Non-Power-Of-Two 텍스처를 사용합니다.
        //이 코드는 혼란을 줄이기 위해 웹 페이지에는 포함되어 있지 않습니다.
        if (width < 1)width = 1;
        if (height < 1) height = 1;
    }
 
    free(buffer);
 
    return textureID;
}
 
bool loadOBJ(
    const char * path,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    printf("OBJ 파일 로딩중 %s...\n", path);
 
    std::vector<unsigned int> vertexIndices, uvIndices, normalIndices;
    std::vector<glm::vec3> temp_vertices;
    std::vector <glm::vec2> temp_uvs;
    std::vector<glm::vec3> temp_normals;
 
    FILE * file = fopen(path, "r");
    if (file == NULL) {
        printf("파일 경로를 확인하세요!\n");
        getchar();
        return false;
    }
 
    while (1) {
 
        char lineHeader[128];
 
        //첫번째 라인의 첫번째 단어를 읽는다
        int res = fscanf(file, "%s", lineHeader);
        if (res == EOF)
            break;
 
        //else : 라인의 헤더를 parse
        if (strcmp(lineHeader, "v"== 0) {
            glm::vec3 vertex;
            fscanf(file, "%f %f %f\n"&vertex.x, &vertex.y, &vertex.z);
            temp_vertices.push_back(vertex);
        }
        else if (strcmp(lineHeader, "vt"== 0) {
            glm::vec2 uv;
            fscanf(file, "%f %f\n"&uv.x, &uv.y);
            uv.y = -uv.y; //우리가 DDS texture만을 이용할 것이므로 V의 좌표를 반대로 바꾸어준다. 만약 TGA or BMP 로더를 사용하면 이 것을 제거해라.
            temp_uvs.push_back(uv);
        }
        else if (strcmp(lineHeader, "vn"== 0) {
            glm::vec3 normal;
            fscanf(file, "%f %f %f\n"&normal.x, &normal.y, &normal.z);
            temp_normals.push_back(normal);
        }
        else if (strcmp(lineHeader, "f"== 0) {
            std::string vertex1, vertex2, vertex3;
            unsigned int vertexIndex[3], uvIndex[3], normalIndex[3];
            int matches = fscanf(file, "%d/%d/%d %d/%d/%d %d/%d/%d\n"&vertexIndex[0], &uvIndex[0], &normalIndex[0], &vertexIndex[1], &uvIndex[1], &normalIndex[1], &vertexIndex[2], &uvIndex[2], &normalIndex[2]);
            if (matches != 9) {
                printf("파일을 읽을수없다.");
                return false;
            }
            vertexIndices.push_back(vertexIndex[0]);
            vertexIndices.push_back(vertexIndex[1]);
            vertexIndices.push_back(vertexIndex[2]);
            uvIndices.push_back(uvIndex[0]);
            uvIndices.push_back(uvIndex[1]);
            uvIndices.push_back(uvIndex[2]);
            normalIndices.push_back(normalIndex[0]);
            normalIndices.push_back(normalIndex[1]);
            normalIndices.push_back(normalIndex[2]);
        }
        else {
            //나머지 라인을 먹는다.
            char stupidBuffer[1000];
            fgets(stupidBuffer, 1000, file);
        }
    }
 
    //각 삼각형의 각 꼭지점
    for (unsigned int i = 0; i < vertexIndices.size(); i++) {
 
        //속성의 인덱스를 가져온다
        unsigned int vertexIndex = vertexIndices[i];
        unsigned int uvIndex = uvIndices[i];
        unsigned int normalIndex = normalIndices[i];
 
        //인덱스에서 속성을 가져온다
        glm::vec3 vertex = temp_vertices[vertexIndex - 1];
        glm::vec2 uv = temp_uvs[uvIndex - 1];
        glm::vec3 normal = temp_normals[normalIndex - 1];
 
        //버퍼에 속성을 넣는다
        out_vertices.push_back(vertex);
        out_uvs.push_back(uv);
        out_normals.push_back(normal);
 
    }
 
    return true;
 
}
 
void indexVBO(
    std::vector<glm::vec3> & in_vertices,
    std::vector<glm::vec2> & in_uvs,
    std::vector<glm::vec3> & in_normals,
 
    std::vector<unsigned short> & out_indices,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals
) {
    std::map<PackedVertex, unsigned short> VertexToOutIndex;
 
    //각 input vertex를 위해
    for (unsigned int i = 0; i < in_vertices.size(); i++) {
        PackedVertex packed = { in_vertices[i], in_uvs[i], in_normals[i] };
 
        //out_XXXX에서 비슷한 vertex를 찾는다
        unsigned short index;
        bool found = getSimilarVertexIndex_fast(packed, VertexToOutIndex, index);
 
        if (found) { //비슷한 vertex가 VBO에 이미 있다면 대신 사용한다
            out_indices.push_back(index);
        }
        else {         //아니라면 이것은 아웃풋 데이터 추가가 필요하다
            out_vertices.push_back(in_vertices[i]);
            out_uvs.push_back(in_uvs[i]);
            out_normals.push_back(in_normals[i]);
            unsigned short newindex = (unsigned short)out_vertices.size() - 1;
            out_indices.push_back(newindex);
            VertexToOutIndex[packed] = newindex;
        }
 
    }
 
 
}
 
void indexVBO_TBN(
    std::vector<glm::vec3> & in_vertices,
    std::vector<glm::vec2> & in_uvs,
    std::vector<glm::vec3> & in_normals,
    std::vector<glm::vec3> & in_tangents,
    std::vector<glm::vec3> & in_bitangents,
 
    std::vector<unsigned short> & out_indices,
    std::vector<glm::vec3> & out_vertices,
    std::vector<glm::vec2> & out_uvs,
    std::vector<glm::vec3> & out_normals,
    std::vector<glm::vec3> & out_tangents,
    std::vector<glm::vec3> & out_bitangents
) {
    //각 input vertex를 위해
    for (unsigned int i = 0; i < in_vertices.size(); i++) {
 
        //out_XXXX 에서 비슷한 vertex를 찾는다
        unsigned short index;
        bool found = getSimilarVertexIndex(in_vertices[i], in_uvs[i], in_normals[i], out_vertices, out_uvs, out_normals, index);
 
        if (found) { //비슷한 vertex가 이미 VBO에 있으면, 이것을 대신 사용
            out_indices.push_back(index);
 
            //tangents와 bitangents의 평균을 한다
            out_tangents[index] += in_tangents[i];
            out_bitangents[index] += in_bitangents[i];
        }
        else { // 만약 아니라면, output data에서 추가한다
            out_vertices.push_back(in_vertices[i]);
            out_uvs.push_back(in_uvs[i]);
            out_normals.push_back(in_normals[i]);
            out_tangents.push_back(in_tangents[i]);
            out_bitangents.push_back(in_bitangents[i]);
            out_indices.push_back((unsigned short)out_vertices.size() - 1);
        }
    }
 
 
}
 
void computeMatricesFromInputs() {
 
    //glfwGetTime은 한번만 호출된다.
    static double lastTime = glfwGetTime();
 
    //현재와 마지막 프레임의 시간 차를 계산한다.
    double currentTime = glfwGetTime();
    float deltaTime = float(currentTime - lastTime);
 
    //마우스의 위치를 얻는다.
    double xpos, ypos;
    glfwGetCursorPos(window, &xpos, &ypos);
 
    //다음 프레임의 마우스 위치를 리셋한다.
    glfwSetCursorPos(window, 1024 / 2768 / 2);
 
    horizontalAngle += mouseSpeed * float(1024 / 2 - xpos);
    verticalAngle += mouseSpeed * float(768 / 2 - ypos);
 
    //Direction : Spherical 좌표 to Cartesian 좌표 변환
    glm::vec3 direction(
        cos(verticalAngle)*sin(horizontalAngle),
        sin(verticalAngle),
        cos(verticalAngle)*cos(horizontalAngle)
    );
 
    //Right vector
    glm::vec3 right = glm::vec3(
        sin(horizontalAngle - 3.14f / 2.0f),
        0,
        cos(horizontalAngle - 3.14f / 2.0f)
    );
 
    //Up vector
    glm::vec3 up = glm::cross(right, direction);
 
    //앞으로 이동
    if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) {
        position += direction*deltaTime*speed;
    }
    //뒤로 이동
    if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) {
        position -= direction*deltaTime*speed;
    }
    //오른쪽로 Strafe
    if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) {
        position += right*deltaTime*speed;
    }
    //왼쪽으로 Strafe
    if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) {
        position -= right*deltaTime*speed;
    }
 
    float FoV = initialFoV;
 
    ProjectionMatrix = glm::perspective(FoV, 4.0f / 3.0f, 0.1f, 100.0f);
 
    ViewMatrix = glm::lookAt(
        position,                //camera here
        position + direction,        //and looks here
        up                        // Head is up
    );
 
    //다음 프레임을 위해
    lastTime = currentTime;
}
 
void computeTangentBasis(
    //inputs
    std::vector<glm::vec3> & vertices,
    std::vector<glm::vec2> & uvs,
    std::vector<glm::vec3> & normals,
    //outputs
    std::vector<glm::vec3> & tangents,
    std::vector<glm::vec3> & bitangents
) {
    for (unsigned int i = 0; i < vertices.size(); i += 3) {
 
        //shortcuts for vertices
        glm::vec3 & v0 = vertices[i + 0];
        glm::vec3 & v1 = vertices[i + 1];
        glm::vec3 & v2 = vertices[i + 2];
 
        //shortcuts for UVs
        glm::vec2 & uv0 = uvs[i + 0];
        glm::vec2 & uv1 = uvs[i + 1];
        glm::vec2 & uv2 = uvs[i + 2];
 
        //edges of the triangle : position delta
        glm::vec3 deltaPos1 = v1 - v0;
        glm::vec3 deltaPos2 = v2 - v0;
 
        //UV delta
        glm::vec2 deltaUV1 = uv1 - uv0;
        glm::vec2 deltaUV2 = uv2 - uv0;
 
        float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x);
        glm::vec3 tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y)*r;
        glm::vec3 bitangent = (deltaPos2 * deltaUV1.x - deltaPos1*deltaUV2.x)*r;
 
        //삼각형의 모든 세개의 정점을 위해 같은 tangent를 세팅한다.
        //그것들은 곧 병합될겉이다
        tangents.push_back(tangent);
        tangents.push_back(tangent);
        tangents.push_back(tangent);
 
        //binormals를 위한 같은 것
        bitangents.push_back(bitangent);
        bitangents.push_back(bitangent);
        bitangents.push_back(bitangent);
 
    }
 
    // "Going Further" 봐라
    for (unsigned int i = 0; i < vertices.size(); i += 1) {
        glm::vec3 & n = normals[i];
        glm::vec3 & t = tangents[i];
        glm::vec3 & b = bitangents[i];
 
        //Gram-Schmidt orthogonalize
        t = glm::normalize(t - n*glm::dot(n, t));
 
        //handedness 계산
        if (glm::dot(glm::cross(n, t), b) < 0.0f) {
            t = t*-1.0f;
        }
    }
}
 
void initText2D(const char * texturePath) {
 
    //텍스쳐 초기화
    Text2DTextureID = loadDDS(texturePath);
 
    //VBO 초기화
    glGenBuffers(1&Text2DVertexBufferID);
    glGenBuffers(1&Text2DUVBufferID);
 
    //Shader 초기화
    Text2DShaderID = LoadShaders("TextVertexShader.vertexshader""TextVertexShader.fragmentshader");
 
    //uniforms' IDs 초기화
    Text2DUniformID = glGetUniformLocation(Text2DShaderID, "myTextureSampler");
 
}
void printText2D(const char * text, int x, int y, int size) {
 
    unsigned int length = strlen(text);
 
    //buffer 채우기
    std::vector<glm::vec2> vertices;
    std::vector<glm::vec2> UVs;
    for (unsigned int i = 0; i < length; i++) {
        glm::vec2 vertex_up_left = glm::vec2(x + i*size, y + size);
        glm::vec2 vertex_up_right = glm::vec2(x + i*size + size, y + size);
        glm::vec2 vertex_down_right = glm::vec2(x + i*size + size, y);
        glm::vec2 vertex_down_left = glm::vec2(x + i*size, y);
 
        vertices.push_back(vertex_up_left);
        vertices.push_back(vertex_down_left);
        vertices.push_back(vertex_up_right);
 
        vertices.push_back(vertex_down_right);
        vertices.push_back(vertex_up_right);
        vertices.push_back(vertex_down_left);
 
        char character = text[i];
        float uv_x = (character % 16/ 16.0f;
        float uv_y = (character / 16/ 16.0f;
 
        glm::vec2 uv_up_left = glm::vec2(uv_x, uv_y);
        glm::vec2 uv_up_right = glm::vec2(uv_x + 1.0f / 16.0f, uv_y);
        glm::vec2 uv_down_right = glm::vec2(uv_x + 1.0f / 16.0f, (uv_y + 1.0f / 16.0f));
        glm::vec2 uv_down_left = glm::vec2(uv_x, (uv_y + 1.0f / 16.0f));
        UVs.push_back(uv_up_left);
        UVs.push_back(uv_down_left);
        UVs.push_back(uv_up_right);
 
        UVs.push_back(uv_down_right);
        UVs.push_back(uv_up_right);
        UVs.push_back(uv_down_left);
 
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec2), &vertices[0], GL_STATIC_DRAW);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glBufferData(GL_ARRAY_BUFFER, UVs.size() * sizeof(glm::vec2), &UVs[0], GL_STATIC_DRAW);
 
        // Bind shader
        glUseProgram(Text2DShaderID);
 
        // Bind texture
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, Text2DTextureID);
        // Set our "myTextureSampler" sampler to user Texture Unit 0
        glUniform1i(Text2DUniformID, 0);
 
        // 1rst attribute buffer : vertices
        glEnableVertexAttribArray(0);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DVertexBufferID);
        glVertexAttribPointer(02, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        // 2nd attribute buffer : UVs
        glEnableVertexAttribArray(1);
        glBindBuffer(GL_ARRAY_BUFFER, Text2DUVBufferID);
        glVertexAttribPointer(12, GL_FLOAT, GL_FALSE, 0, (void*)0);
 
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 
        // Draw call
        glDrawArrays(GL_TRIANGLES, 0, vertices.size());
 
        glDisable(GL_BLEND);
 
        glDisableVertexAttribArray(0);
        glDisableVertexAttribArray(1);
    }
 
}
void cleanupText2D() {
 
    // Delete buffers
    glDeleteBuffers(1&Text2DVertexBufferID);
    glDeleteBuffers(1&Text2DUVBufferID);
 
    // Delete texture
    glDeleteTextures(1&Text2DTextureID);
 
    // Delete shader
    glDeleteProgram(Text2DShaderID);
}
 
quat RotationBetweenVectors(vec3 start, vec3 dest) {
    start = normalize(start);
    dest = normalize(dest);
 
    float cosTheta = dot(start, dest);
    vec3 rotationAxis;
 
    if (cosTheta < -1 + 0.001f) {
        //반대 방향의 벡터인 특별한 경우 :
        //"ideal" rotation 축이 없다
        //그래서 추축해라; 어떤 것도 그것이 시작에 수직일 때만 할 것이다
        //이 구현은 up축을 중심으로 한 회전을 선호하지만
        rotationAxis = cross(vec3(0.0f, 0.0f, 1.0f), start);
        if (length2(rotationAxis) < 0.01//운이 나빠서 평행일때 다시해라!
            rotationAxis = cross(vec3(1.0f, 0.0f, 0.0f), start);
 
        rotationAxis = normalize(rotationAxis);
        return angleAxis(180.0f, rotationAxis);
    }
 
    // Stan Melax의 게임 프로그래밍 Gems 1 구현
    rotationAxis = cross(start, dest);
 
    float s = sqrt((1 + cosTheta) * 2);
    float invs = 1 / s;
 
    return quat(
        s*0.5f,
        rotationAxis.x * invs,
        rotationAxis.y * invs,
        rotationAxis.z * invs
    );
}
 
quat LookAt(vec3 direction, vec3 desiredUp) {
 
    if (length2(direction) < 0.0001f)
        return quat();
 
    // 방향에 수직이 되도록 desiredUp을 재계산한다
    // 원하는 부분을 실제로 강제 실행하려면 해당 부분을 건너 뛸 수 있다
    vec3 right = cross(direction, desiredUp);
    desiredUp = cross(right, direction);
 
    // 객체의 앞면(+Z쪽으로 가정하는 회전)을 찾는다
    // 그러나 이것은 당신의 모델에 달려있다, 그리고 원하는 방향
    quat rot1 = RotationBetweenVectors(vec3(0.0f, 0.0f, 1.0f), direction);
 
    // 1회전 때문에, 위로 올랐을 때 아마 완전히 엉망이 되었다
    // 회전된 객체의 "up"과 원하는 객체 사이의 회전을 찾는다
    vec3 newUp = rot1*vec3(0.0f, 1.0f, 0.0f);
    quat rot2 = RotationBetweenVectors(newUp, desiredUp);
 
    // 적용한다
    return rot2*rot1;
}
 
quat RotateTowards(quat q1, quat q2, float maxAngle) {
 
    if (maxAngle < 0.001f) {
        // 회전은 허용되지 않는다. 나중에 0으로 나누는 것을 방지해라
        return q1;
    }
 
    float cosTheta = dot(q1, q2);
 
    // q1과 q2는 이미 동일하다
    // q2는 옳다
    if (cosTheta > 0.9999f) {
        return q2;
    }
 
    // sphere 주변의 긴 경로를 방지해라
    if (cosTheta < 0) {
        q1 = q1*-1.0f;
        cosTheta *= -1.0f;
    }
 
    float angle = acos(cosTheta);
 
    // 차이가 2개인 경우 5가 허용될까?
    if (angle < maxAngle) {
        return q2;
    }
 
    // 이것은 slerp()와 같지만 사용자 정의 t와 함께 한다
    float t = maxAngle / angle;
    angle = maxAngle;
 
    quat res = (sin((1.0f - t)*angle) * q1 + sin(t*angle)*q2) / sin(angle);
    res = normalize(res);
    return res;
}
cs


'Game > Graphics' 카테고리의 다른 글

Learn OpenGL - Getting started : Creating a Window  (0) 2018.08.01
Learn OpenGL  (0) 2018.08.01
OpenGL-Tutorial 18 : Billboards  (0) 2018.07.04
OpenGL-Tutorial 17 : Rotations  (2) 2018.07.03
OpenGL-Tutorial 16 : Shadow mapping  (2) 2018.07.02